

STUDIO DELLE FASCE FLUVIALI DEI SOTTOBACINI DEL FIUME BORMIDA DI SPIGNO E DEL FIUME BORMIDA DI MILLESIMO

ATTIVITA' D - ASPETTO IDRAULICO

RELAZIONE

CODICE	DOCUMENTO		ELABORATO			
1 5	4 8 /	0 3 - 0 0 1 0	4			
00	DIC. 02	A.CROSTA	R.DUTTO	M.BUFFO		
REV.	DATA	REDAZIONE	VERIFICA	AUTORIZZAZIONE	MODIFICHE	

RIPRODUZIONE O CONSEGNA A TERZI SOLO DIETRO SPECIFICA AUTORIZZAZIONE

SGA – GENOVA Studio Dott. Francesco Cipolla Dott. Claudio Sebastiani Geologi Associati

1. PREMESSA

La presente relazione illustra le metodologie ed i risultati della "ATTIVITÀ D – ASPETTO IDRAULICO, Idrologia – Portata di riferimento" secondo lo schema presentato nella "Relazione illustrativa metodologie di lavoro e strumentazione" (Luglio 2001) e ripreso interamente nel "Programma di lavoro" (Dicembre 2001).

Vengono quindi illustrate le attività di : Stima della portata in occasione di eventi storici (attività D.1); Misure dirette di portata (D.2); Analisi idrologiche locali (D.3) e Portate di piena per assegnato periodo di ritorno (D.4)

2. STIMA DELLA PORTATA IN OCCASIONE DI EVENTI STORICI

Per una valutazione iniziale delle principali criticità presenti sui tratti in esame si è proceduto ad acquisire il materiale storico disponibile.

Sono stati acquisiti pubblicazioni ed altri dati relativi agli eventi di piena storici ed informazioni relative ad eventuali danni e problematiche emerse.

I principali testi di riferimento per tale attività sono stati:

- "Eventi alluvionali e frane nel bacino della bormida. Studio retrospettivo" (*D.Tropeano, Dicembre 1989*);
- "Gli eventi alluvionali del 22 e 27 Settembre 1992 in Liguria. Studio idrologico e geomorfologico" (CNR Istituto di ricerca per la protezione idrogeologica nel bacino padano Torino, dicembre 1993);
- GEAM associazione mineraria subalpina, Anno XXXI Dicembre n°4 1994.

L'indagine ha contribuito all'individuazione dell'area di studio ed all'inquadramento delle problematiche.

Alcune situazioni riportate sono state successivamente utilizzate come validazione delle risultanze dello studio idraulico e geomorfologico.

Non è stato invece possibile acquisire informazioni significative relative alle portate di piena defluenti nel corso degli eventi storici considerati.

Le altre informazioni acquisite nell'ambito di questa attività hanno comunque fornito indicazioni utili per le finalità dello studio.

3. MISURE DIRETTE DI PORTATA

Per completare il quadro conoscitivo diretto sui corsi d'acqua in esame relativamente agli aspetti ambientali e idrologici e per supportare la messa a punto e calibrazione dei modelli idraulici di simulazione, sono state eseguite misure dirette di portata sulle sezioni interessate da stazioni di misura idrometriche, che vengono sotto elencate con i principali risultati delle indagini.

STAZIONE	DATA MISURA	PORTATA	LIVELLO IDROMETRICO
		(m³/s)	(m)
Bormida di Mallare ad Altare	09/10/02	0,062	- 0,03
Bormida di Mallare a Ferrania	09/10/02	0,132	1,17
Bormida di Pallare a Fornelli	09/10/02	0,063	0,06
Bormida di Millesimo a Murialdo	09/10/02	0,649	0,22
	20/03/02	2,530	0,46
Bormida di Millesimo a Cengio	09/10/02	1,062	0,77

Tabella 1 -Risultati delle misure di portata correntometriche.

Le misure sono state eseguite con metodo correntometrico, seguendo le procedue operative e di elaborazione dei dati riportate in allegato 1.

Lo stesso allegato riporta le schede descrittive di dettaglio delle misure.

I dati di misura rappresentano condizioni di bassa portata e non sono pertanto esaustivi per la stima delle scabrezze da assegnare ai modelli idraulici.

Essi consentono comunque un primo riscontro e danno la possibilità, con future campagne di misura e con il supporto interattivo dei modelli numerici già predisposti, di elaborare le scale di deflusso delle sezioni, utilizzabili in futuro per la stima dell'entità delle portate di piena a partire dai livelli misurati.

4. ANALISI IDROLOGICHE LOCALI

4.1 Lo ietogramma di progetto

La simulazione della risposta idrologica con eventi sintetici di durata pari alla durata critica del bacino sotteso e altezza di precipitazione derivata dalla curva di possibilità pluviometrica per assegnato tempo di ritorno, non permette di tenere conto delle condizioni di bagnamento del suolo antecedenti allo scroscio, se non con formule empiriche che non consentono di identificarne il tempo di ritorno.

Per evitare la problematica valutazione dell'incidenza di tali condizioni iniziali sul tempo di ritorno, si è scelto come evento sintetico per le simulazioni, un evento di durata complessiva pari alla durata tipica, T, di un evento meteorologico intenso e altezza di pioggia complessiva, H, derivante dalla curva di possibilità pluviometrica. Esso è costituito da due sottoeventi, entrambi di intensità uniforme: il secondo sottoevento è di durata pari alla durata critica θ_c per il bacino in esame ed ha altezza derivata dalle curve di possibilità pluviometrica, h. Il primo sottoevento rappresenta il complemento alle dodici ore sia per quanto riguarda la durata $(T-\theta_c)$ che l'altezza di pioggia (H-h), come si può vedere in Figura 1. La funzione del primo sottoevento è quella di saturare il terreno in modo tale da simulare al momento dello scroscio le condizioni di antecedente bagnamento del suolo tipiche degli eventi estremi oggetto del presente studio.

La durata complessiva T, dell'evento pluviometrico è stata assunta pari a 12 ore sia in base a studi relativi ai dati pluviometrici registrati alla stazione-campione di Villa Cambiaso (con un pluviometro a bascula di risoluzione 0.2 mm e scansione di registrazione di un minuto), che all'analisi degli eventi meteorici che hanno causato esondazioni negli ultimi anni.

Un'ulteriore conferma viene dall'analisi di immagini METEOSAT per eventi intensi, come ad esempio quella fatta per l'evento del Settembre 1992 [G.N.D.C.I., 1992]. Tali analisi hanno permesso di identificare il tempo medio di permanenza delle perturbazioni sulla Liguria stimando, dalle sequenze di immagini, la loro dimensione e velocità di movimento. Anche da tale tipo di analisi si possono dedurre durate tipiche degli eventi intensi di circa 12 ore.

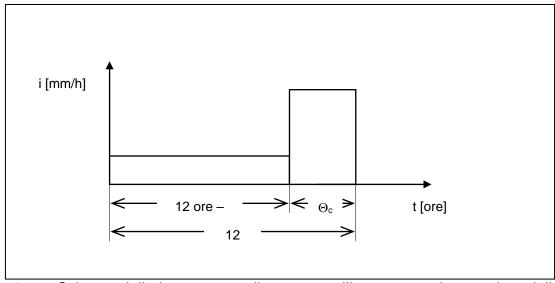


Figura 1 - Schema dello ietogramma di progetto utilizzato come input nel modello semidistribuito DRiFt. Esso si compone di due parti: la prima che dura un tempo pari a 12 ore meno il "tempo critico", mentre la seconda con durata pari al "tempo critico" del bacino in esame.

4.2 Linee segnalatrici di possibilità pluviometrica

I parametri della linea segnalatrice di possibilità pluviometrica sono stati dedotti seguendo la procedura illustrata nel documento: "Attività D – Aspetto idraulico/nota metodologica" procedura accolta in data 23/09/2002 (protocollo n. 51684/3-02).

Tale procedura si proponeva di risolvere il dualismo nella definizione dei metodi di valutazione delle portate di piena dei corsi d'acqua situati in territorio ligure, lungo il versante padano dell'Appennino, nel dominio idrologico dell'Autorità di Bacino del fiume Po.

Mentre la Regione Liguria, infatti, nel metodo messo a punto dal CIMA, propone una procedura di regionalizzazione idrologica delle portate di piena, effettuata sulla base delle trasformazioni al suolo delle piogge intense, frutto dell'analisi statistiche sulle stazioni pluviometriche storiche della regione localizzate in massima parte sul versante tirrenico dell'Appennino, l'Autorità di Bacino del Po propone una procedura di distribuzione spaziale delle piogge intense, effettuata sulla base delle stazioni pluviometriche storiche, principalmente site nella parte piemontese di pianura del bacino.

Le risultanze di entrambi i metodi riflettono statisticamente due tipologie di fenomeni di precipitazione fisicamente differenti, osservati dalle rispettive reti pluviometriche. In particolare l'applicazione del metodo proposto dalla sovraordinata Autorità dello strumento pianificatorio restituisce per le aree più montane della fascia esaminata, valori sottostimati, rendendo problematico, per motivi di sicurezza, il suo utilizzo. D'altra parte, l'uso indiscriminato del metodo regionale in tutta la fascia in esame, secondo il principio ingegneristico "a favor di sicurezza", condurrebbe ad una sovrastima delle portate di piena e consequentemente ad un ingiustificato sovradimensionamento delle opere progettate.

Il metodo utilizzato è stato studiato e verificato con il supporto della consulenza idrologica di ACROTEC S.r.l. di Savona, a fronte della esperienza e delle competenze in campo meteoidrologico pregresse, maturate in particolare anche per l'area oggetto dello studio e fondamentali per valutare la significatività idrologica dei risultati derivanti dalle elaborazioni proposte.

Tale metodo si pone in una posizione di compromesso, determinando un nuovo set di parametri per le linee segnalatrici di possibilità pluviometrica dell'intera area, ottenuto tramite una semplice media aritmetica dei valori desunti dall'applicazione dei metodi a confronto, e di utilizzarli per la determinazione delle piogge massime in funzione della loro durata.

L'applicazione del metodo suddetto porta alla determinazione dei parametri descrittivi delle linee di pioggia riportati in tabella 2 unitamente ai valori risultanti dalle altre metodologie; questi possono essere assunti costanti per tutti i sottobacini dei fiumi Bormida di Spigno e Bormida di Millesimo, ricadenti sul territorio ligure.

Tali valori sono riportati anche in forma grafica per una più facile ed immediata visualizzazione, anche in rapporto alle analisi a sito singolo (Figure 2, 3, 4). Le rappresentazioni grafiche evidenziano che la curva media proposta si dispone come inviluppo superiore delle curve segnalatrici sito specifiche.

		ат		n			
	Regione Liguria	Valore proposto	Autorità di Bacino	Regione Liguria	Valore proposto	Autorità di Bacino	
T = 50 anni	78.5	61.5	44.6				
T = 200 anni	104.0	78.6	53.2	0.39	0.43	0.47	
T = 500 anni	122.7	90.7	58.8				

Tabella 2 - Parametri delle LSPP secondo il metodo proposto a confronto con i metodi esaminati.

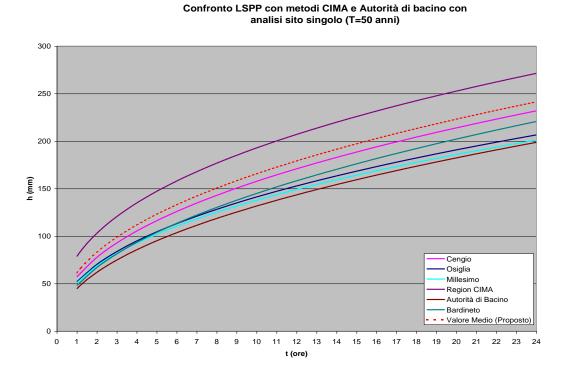


Figura 2 - Linee segnalatrici di possibilità pluviometrica per T=50 anni.

Confronto LSPP con metodi CIMA e Autorità di bacino con analisi sito singolo (T=200 anni)

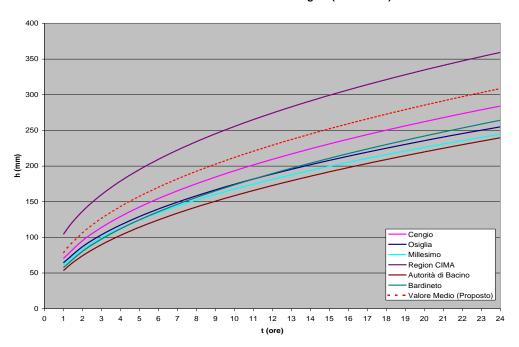


Figura 3 - Linee segnalatrici di possibilità pluviometrica per T=200 anni.

Confronto LSPP con metodi CIMA e Autorità di bacino con analisi sito singolo (T=500 anni)

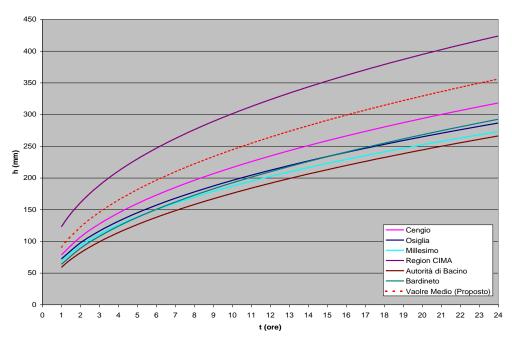


Figura 4 - Linee segnalatrici di possibilità pluviometrica per T=500 anni.

6

Questa metodologia trova un'importante conferma puntuale nelle determinazioni della Sottocommissione Assetto Idrogeologico dell'Autorità di Bacino, che nella seduta del 13 Aprile 2000, ha fissato la portata duecentennale di riferimento per il dimensionamento del muro di contenimento arginale del sito industriale dell'Acna di Cengio(SV), pari a 1200 m3/s.

Sezione	A=243 Km ²	Metodi	Q (T=50)	Q (T=200)	Q (T=500)
		Studio Regionale	1230	1780	2140
		Metodo proposto	850	1160	1360
Bormida co	onfine Piemonte	Autorità di Bacino del PO	580	770	860
		Portata di progetto fissata per l'argine ACNA		1200	

Tabella 3 -Confronto tra diversi metodi per la determinazione delle portate cinquantennali, duecentennali e cinquecentennali: il metodo "mediato" utilizzato in questo lavoro trova un importante conferma puntuale nella della portata duecentennale di riferimento per il dimensionamento del muro di contenimento arginale del sito industriale dell'Acna di Cengio(SV) fissata a 1200 m3/s dalla sottocommissione Assetto Idrogeologico dell'Autorità di Bacino.

5. PORTATE DI PIENA PER T ASSEGNATO

5.1 Metodologie utilizzate

La presente analisi idrologica è stata condotta mediante l'applicazione del modello idrologico afflussi-deflussi DRiFt (Discharge River Forecast), come specificato nella relazione di programma di lavoro. La scelta nell'applicazione di tale modello è stata dettata dalla conformazione geomorfologia del territorio in esame, in cui la parte montana risulta preponderante nei processi di formazione della piena rispetto a quella con caratteristiche spiccatamente vallive.

5.1.1 II modello idrologico afflussi-deflussi: DRiFt (Discharge River Forecast)

Il modello afflussi deflussi DRiFt (Discharge River Forecast) è stato sviluppato nell'ambito dell'analisi della risposta idrologica a scala di bacino, incentrata principalmente sulla simulazione e previsione di idrogrammi di piena. La tendenza attuale della modellazione è indirizzata verso modelli sempre più complessi il cui intento è quello di riprodurre con

7

maggiore accuratezza i processi fisici di interesse; spesso però una sofisticata descrizione di tali processi porta a benefici non paragonabili alla complessità dei modelli. D'altra parte bisogna riconoscere che l'eccessiva semplificazione di alcuni metodi tradizionali (formula razionale) e i metodi usualmente utilizzati per la progettazione (curva inviluppo dei contributi unitari delle portate al colmo di piena) non tengono in conto aspetti importanti quali la variabilità spaziale delle piogge, delle caratteristiche del suolo e della struttura topografica del sistema. Il modello si propone come uno strumento di semplice utilizzo, in grado comunque di interpretare le caratteristiche ritenute di principale importanza per la modellazione al colmo di piena.

Il modello DRiFt è un modello lineare, semi-distribuito, parziale (non gestisce il deflusso sub-superficiale), in grado di effettuare simulazioni a scala di evento. L'approccio lineare è stato adottato in quanto bene si presta a descrivere la realtà morfologica studiata ed è definito semi-distribuito in quanto accetta e gestisce l'informazione in ingresso spazialmente distribuita sul territorio e fornisce il risultato concentrato in una sezione specifica.

Il modello è costituito da tre moduli distinti:

- Individuazione della rete di drenaggio;
- Determinazione dei tempi di corrivazione;
- Calcolo dell'idrogramma di piena attraverso la convoluzione degli idrogrammi unitari istantanei.

Il primo modulo identifica le diverse componenti che costituiscono la rete di drenaggio effettuando la distinzione tra versante e canale. Tale distinzione avviene utilizzando una procedura di filtro con significato morfologico. Questo modulo utilizza come dato di ingresso le informazioni derivanti dai modelli digitali di elevazione del territorio (DEM) sotto forma di dati di quota, area drenata e un sistema di puntatori per l'individuazione del percorso di drenaggio. Il risultato di questo modulo è la classificazione di ogni cella appartenente al bacino in cella-versante o cella-canale e la determinazione della distanza parziale da una cella a quella successiva secondo la via indicata dal puntatore. La Figura 5 rappresenta i reticoli di drenaggio della Regione Liguria come risultano individuati nel modello a partire dalle informazioni digitali di elevazione del territorio.

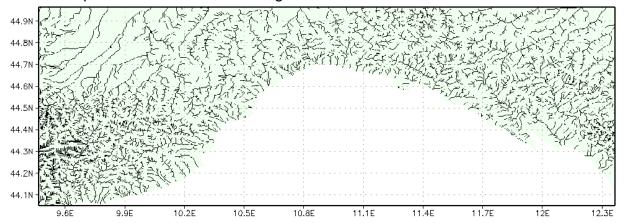


Figura 5 - Modello DRiFt; individuazione reticoli idrografici della Regione Liguria.

Il secondo modulo utilizza come ingresso i risultati del primo modulo e, attribuendo nella cella-canale una velocità di scorrimento del deflusso superficiale stimata pari a 2.5m/s e nella celle-versante una velocità stimata pari a 0.16m/s, determina per ogni cella il relativo tempo di corrivazione individuando l'idrogramma istantaneo unitario. L'IUH è calcolato sommando il contributo di ogni cella, alla quale è associato un tempo di corrivazione calcolato come somma dei tempi trascorsi dal ruscellamento prodotto in quella cella rispettivamente sul versante e nel canale lungo il tragitto che lo collega alla sezione di chiusura.

Il terzo modulo accetta come ingresso le piogge e i tempi di corrivazione determinati dal secondo modulo e, sfruttando le proprietà dei sistemi lineari, effettua la convoluzione degli idrogrammi istantanei unitari. La pioggia lorda viene trasformata in pioggia efficace attraverso la metodologia proposta dal Soil Conservation Service. Le condizioni di antecedente bagnamento del terreno sono state prese in considerazione nella costituzione dello ietogramma di progetto.

Nell'effettuare la convoluzione si hanno alcune differenze fondamentali rispetto al metodo classico dell'IUH in quanto la variabilità temporale della pioggia in ingresso e spaziale delle caratteristiche del terreno conducono ad un idrogramma istantaneo variabile nel tempo anziché ad un idrogramma istantaneo tempo invariante: l'uscita di questo terzo modulo è l'idrogramma di piena nella prefissata sezione di chiusura.

5.1.2 Il sistema integrato DRiFt – Mike11

Il modello idrologico DriFt è strettamente integrato con il modello idraulico attivato per la rappresentazione della propagazione dei deflussi lungo le aste fluviali.

Le risultanze di recenti studi sperimentali circa il sistema di modellazione delle piene DRiFt - Mike11 ha dimostrato l'efficacia di tale integrazione.

A titolo di esempio riportiamo in Figura 6 l'idrogramma registrato alla sezione di chiusura di Cassine sul bacino del Bormida, durante l'evento del 15 ottobre 2000

1548-03-00100_Relazioneldraulica.doc/AC/DU/BU

9

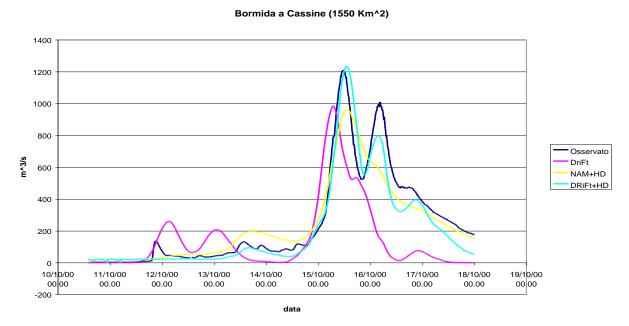


Figura 6 - Confronto tra l'idrogramma registrato alla sezione di chiusura di Cassino sul bacino del Bormida, durante l'evento del 15 ottobre 2000 e quello simulato dal sistema DRiFt - Mike11-HD.

La risposta fornita da DRiFt + MIKE11-HD per l'evento di Ottobre risulta molto aderente a quella osservata, in quanto capace di descrivere la dinamica dell'evoluzione della piena. In particolare è da evidenziare anche qui la capacità del sistema integrato di modellare il doppio picco di portata osservato. Su tale comportamento risulta determinante la dinamica di formazione della piena ed in particolare i tempi al picco della Bormida di Spigno e di Millesimo a monte della confluenza.

5.2 Risultati ottenuti

Applicando le metodologie sopra esposte sono stati calcolati gli idrogrammi di piena per varie sezioni di riferimento dei tratti studiati.

Tali sezioni sono state scelte in prossimità di confluenze, o comunque di significativi apporti di portata, in modo da descrivere al meglio l'aumento di portata di piena al variare dell'area drenata.

Nelle tabelle 4 e 5 si riportano in forma riassuntiva i valori delle portate al picco relativi a ciascuna sezione in esame corrispondenti ai tempi di ritorno T=50, T=200, T=500 (anni).

Gli idrogrammi relativi ad ogni sezione sono riportati in Allegato 2.

IDENTIFIC	AZIONE DELLA SEZIONE	AREA		PORTATE	
TORRENTE	SEZIONE A VALLE DELLA CONFLUENZA CON	Area [m^2]	Q(T=50) [m^3/s]	Q(T=200) [m^3/s]	Q(T=500) [m^3/s]
Bormida di Millesimo	Rio San Giovanni	25.0	110	149	176
Bormida di Millesimo	Torrente Frassino	80.0	380	508	599
Bormida di Millesimo	Rio Valle	64.0	304	408	480
Bormida di Millesimo	Torrente Osiglietta	171.0	683	917	1082
Bormida di Millesimo	Torrente Zemola	210.0	730	981	1138
Bormida di Millesimo	Rio Giacchetti	222.0	768		1223
Bormida di Millesimo	Rio Siondo	110.0	510	684	805
Bormida di Millesimo	Rio Vetria	96.0	444	600	706
Bormida di Pallare	Torrente Viazza	38.0	173	234	278
Bormida di Mallare	Rio Biterno	24.0	117	157	185
Bormida di Mallare	Torrente Ferranietta	69.0	297	402	476
Bormida di Mallare	Torrente Cappelletta	52.0	231	312	369
Bormida di Spigno	Confluenza Pallare-Mallare	147.0	589	799	948
Bormida di Spigno	Rio Loppa	161.0	634	864	1025
Bormida di Spigno	Rio Ferrere	169.0	653	891	1058
Bormida di Spigno	Rio Carretto	181.0	689	940	1117
Bormida di Spigno	Rio Brange	214.0	776	1059	1258
Bormida di Spigno	Rio Pollovero	207.0	758	1033	1228
Bormida di Spigno	Rio Gelosi (Bormiola)	237.0	819	1118	1328
Bormida di Spigno	Rio Madonna	276.0	903	1233	1466
Bormida di Spigno	Confine Piemonte	277.0	906	1237	1471
Rio Biterno	Rio Merlino	8.0	67	90	106
Rio Valla	Rio Giusvalletta	28.0	106	146	174
Rio Valla	Confine Piemonte	32.0	118	163	194

Tabella 4 - Valori delle portate al picco relativi alle sezioni in esame corrispondenti ai tempi di ritorno T=50, T=200, T=500 (anni).

IDENTIFIC	AZIONE DELLA SEZIONE	AREA		PORTATE	PORTATE		
TORRENTE	SEZIONE A MONTE DELLA CONFLUENZA CON	Area [m^2]	Q(T=50) [m^3/s]	Q(T=200) [m^3/s]	Q(T=500) [m^3/s		
Bormida di Millesimo	Rio San Giovanni	6.0	26	35	42		
Bormida di Millesimo	Confine Piemonte	243.0	850	1162	1356		
Bormida di Millesimo	Rio Frassino	66.5	304	408	480		
Bormida di Millesimo	Rio Valle	48.0	218	293	346		
Bormida di Millesimo	Torrente Osiglietta	142.0	599	803	947		
Bormida di Millesimo	Torrente Zemola	182.0	704	946	1117		
Bormida di Millesimo	Rio Giacchetti	215.0	748	1008	1191		
Rio San Giovanni	Bormida di Millesimo	5.5	56	74	83		
Rio Valle	Bormida di Millesimo	16.0	66	87	102		
Torrente Frassino	Bormida di Millesimo	16.5	86	115	135		
Torrente Osiglietta	Bormida di Millesimo	29.0	128	173	205		
Torrente Zemola	Bormida di Millesimo	27.0	105	140	165		
Rio Giacchetti	Bormida di Millesimo	7.0	35	48	58		
Bormida di Pallare	Bormida di Spigno	63.0	260	355	421		
Bormida di Pallare	Prima Sezione	8.0	42	56	65		
Bormida di Pallare	Torrente Viazza	26.0	122	164	194		
Bormida di Pallare	Torrente Plodio	49.0	211	287	340		
Bormida di Pallare	Torrente Nanta	59.0	244	332	394		
Rio Plodio	Bormida di Pallare	7.0	36	50	60		
Rio Nanta	Bormida di Pallare	4.0	30	41	50		
Torrente Viazza	Bormida di Pallare	12.0	62	85	101		
Bormida di Mallare	Loc. Fucine	13.0	67	90	106		
Bormida di Mallare	Bormida di Spigno	76.0	321	434	514		
Bormida di Mallare	Rio Biterno	13.7	71	95	112		
Bormida di Mallare		49.0	228	308	364		
	Rio Cappelletta		243	328	388		
Bormida di Mallare	Torrente Ferranietta	53.0		1	42		
Rio Cappelletta	Bormida di Mallare	3.0	25	35			
Rio Biterno	Bormida di Mallare	11.3	78 66	108	126		
Torrente Ferranietta	Bormida di Mallare	13.0	66	90	108		
Rio Biterno	Rio Merlino	5.3	41	56	65		
Rio Merlino	Rio Biterno	2.7	27	35	42		
Bormida di Spigno	Traversa di Piana Crixia	250.0	850	1141	1356		
Bormida di Spigno	Rio Pollovero	195.0	725	989	1175		
Bormida di Spigno	Rio Gelosi (Bormiola)	215.0	780	1064	1264		
Bormida di Spigno	Rio Madonna	252.0	850	1159	1378		
Bormida di Spigno	Rio Loppa	154.0	604	819	973		
Bormida di Spigno	Rio Carretto	170.0	657	896	1064		
Bormida di Spigno	Rio Ferrere	162.0	638	869	1032		
Bormida di Spigno	Rio Brange	208.0	762	1038	1234		
Rio Pollovero	Bormida di Spigno	12.0	55	78	90		
Rio Gelosi (Bormiola)	Bormida di Spigno	22.0	107	146	173		
Rio Loppa	Bormida di Spigno	7.0	50	67	80		
Rio Ferrere	Bormida di Spigno	7.0	48	66	78		
Rio Madonna	Bormida di Spigno	24.0	103	140	166		
Rio Carretto	Bormida di Spigno	11.0	45	64	77		
Rio Brange	Bormida di Spigno	6.0	42	58	69		
Rio Vetria	Bormida di Millesimo	13.0	84	120	138		
Rio Rocchetta	Rio Giacchetti	2.5	17	22	28		
Rio Giacchetti	Rio Rocchetta	4.1	26	37	44		
Rio Siondo	Bormida Millesimo	13.0	70	100	115		
Bormida di Millesimo	Torrente Vetria	83.0	390	521	614		
Bormida di Millesimo	Torrente Siondo	97.0	452	606	713		
Rio Valla	Rio Giusvalletta	18.0	68	93	111		
Rio Giusvalletta	Rio Valla	10.0	44	60	72		
Rio Valla	Prima Sezione	14.0	50	68	81		

Tabella 5 -Valori delle portate al picco relativi alle sezione in esame corrispondenti ai tempi di ritorno T=50, T=200, T=500 (anni).

ALLEGATO 1

Misure di portata

MISURE DI PORTATA CORRENTOMETRICHE

Le metodiche di misura applicate sono conformi alle indicazioni delle Norme ISO e CEI in materia.

Vengono sotto elencate le principali pubblicazioni di riferimento per la definizione delle metodiche.

• NORMATIVA ISO/Organisation Internationale de Normalisation - Genève/Suisse.

* ISO 748-1979	Mesure de débit des liquides dans les canaux découverts - Méthodes d'exploration du champ des vitesses.
* ISO 1088-1985	Mesure de débit des liquides dans les canaux découverts - Méthodes d'exploration du champ des vitesses - Recueil des données pour la determination des erreurs de mesurage.
* ISO 1100/2 - 1982	Mesure de débit des liquides dans les canaux découverts - Partie 2: Détermination de la relation hauteur-débit.
* ISO 2537-1974	Mesure de débit des liquides dans les canaux découverts - Moulinets à coupelles et à hèlices.
* ISO 3454-1975	Mesure de débit des liquides dans les canaux découverts - Matériel de sondage et de suspension.
* ISO 3455-1976	Mesure de débit des liquides dans les canaux découverts - Etalonnage des moulinets à élément rotatif en bassins découverts rectilignes.
* ISO 4375-1979	Mesure de débit des liquides dans les canaux découverts - Systèmes de suspension par càbles aériens pour le jaugeage en rivière.
* ISO/TR 7178-1983	Etude de l'erreur globale dans la mesure du débit par les méthodes d'exploration du champ des vitesses.

- NORMATIVA CEI/Commission Electrotechnique Internationale Genève/Suisse.
- * Pubblication 41/1963

Code international concernant les essais de réception sur place des turbines hydrauliques.

- Herschy R.W. (1985):Streamflow measurement.
- Rantz S.E. and others: Measurement and computation of streamflow: volume 1.

- Measurement of stage and discharge.
- ENEL CRIS: Sistema esperto per le misure idrometriche-Manuale di idrometria.

Le misure correntometriche sono state eseguite utilizzando mulinelli tipo A. OTT C31 e C2, provvisti di un set di eliche, tarate e in periodo di validità, idonee per misure in qualsiasi condizione di velocità.

I mulinelli indicati consentono di operare anche su sezioni di dimensioni ridotte (a partire da altezze d'acqua di 4-5 cm).

Le eliche in dotazione hanno diametri compresi tra 1.5 e 12.5 cm e passi compresi tra 0.10 e 0.50 m, caratteristiche che le rendono idonee a coprire tutti i campi di velocità ipotizzabili negli ambienti di misura su corsi d'acqua superficiali.

La dotazione comprende inoltre eliche autocomponenti, per operare in presenza di flussi deviati rispetto alla sezione di misura.

Sono state applicate tecniche di calata a guado con aste di supporto dei mulinelli di diametro 20 mm.

Le sezioni di misura sono state predisposte al rilievo eseguendo la pulizia del fondo e delle sponde, regolarizzando il più possibile le condizioni di flusso, attrezzando le sponde o i manufatti esistenti per applicare i dispositivi di supporto e di calata.

Contestualmente alla misura di portata è stato rilevato il livello idrometrico, dato utile per verificare la stabilità delle condizioni idrologiche durante la misura e per confronti ed estrapolazioni con campagne di misura precedenti e successive, oltre che per elaborare la scala di deflusso della sezione.

Le misure sono state elaborate utilizzando un programma di calcolo messo a punto in modo specifico per il sistema di misura adottato.

In particolare il programma dispone di un data-base contenente le curve di taratura di tutte le eliche utilizzate e le costanti strumentali relative a tutte le tecniche di calata applicate, evitando in questo modo di eseguire preelaborazioni manuali dei dati grezzi di misura per costituire l'input.

Il calcolo della portata viene eseguito applicando il principio "velocità x area" con il metodo della doppia integrazione, secondo i passi sotto indicati.

- Calcolo dei valori puntuali di velocità a partire dai dati di misura, in base alle curve di taratura dei mulinelli.
- Calcolo delle coordinate batimetriche della sezione e della posizione dei punti di misura delle velocità.

- Definizione dei profili di velocità sulle verticali correntometriche mediante curve splines interpolanti i punti di misura. In corrispondenza del fondo vengono assegnate opportune condizioni al contorno in funzione della scabrezza (Prandtl).
- Integrazione dei profili di velocità e calcolo delle velocità medie sulle verticali di misura.
- Definizione dell'andamento orizzontale della velocità media mediante curve splines interpolanti i valori relativi alle singole verticali. In corrispondenza delle sponde vengono assegnate opportune condizioni al contorno in funzione della scabrezza.
- Definizione della curva delle portate specifiche (velocità medie x altezze).
- Integrazione della curva precedente e calcolo delle portate parziali relative alle singole verticali e della portata complessiva.
- Calcolo dei parametri caratteristici della misura (dati geometrici, velocità media e max., ecc.).
- Confronto dei dati della misura con i valori di riferimento indicati dalla Normativa ISO ed esecuzione di test di controllo della qualità della misura.

I documenti descrittivi delle misure allegati di seguito sono costituiti come sotto indicato.

- Modulo di misura della portata, contenente:
 - * i dati di riferimento della misura (individuazione stazione di misura, data, ora, rilevatore ecc.);
 - * i dati grezzi di misura della portata (distanza, profondità, posizione mulinello, n° giri, tempi di esposizione ecc.);
 - * i dati caratteristici della strumentazione, del sistema di calata e del procedimento di misura:
 - * i dati caratteristici della sezione fluviale (tipo fondo e sponde, batimetrie di infittimento);
 - * i dati di misura dei livelli idrometrici;
 - * i dati di sintesi caratteristici della misura (portata, area, contorno bagnato, larghezza del pelo libero, altezza massima, velocità media, velocità superficiale massima, rapporto tra velocità media e velocità superficiale massima);
 - * i risultati dei test di confronto con le indicazioni delle Normative ISO e CEI.
- Scheda grafica, contenente:
 - * l'indicazione dei dati di riferimento della misura, dei dati caratteristici della sezione, del valore di portata misurato e del livello idrometrico corrispondente;
 - * la rappresentazione grafica della sezione, con indicazione delle verticali di misura;
 - * la rappresentazione grafica dei profili di velocità sulle verticali, dell'andamento in senso orizzontale delle velocità medie e delle portate specifiche.

MISURE DI PORTATA METODO CORRENTOMETRICO **ELABORAZIONE**

CLASSIFICAZIONE 1548H001

BMAAL

DATI GENERALI

LOCALITA' DI MISURA : BORMIDA DI MALLARE AD ALTARE STAZIONE DI MISURA : BMAAL
DATA (gg-mm-aa) : 09/10/02
ORA (hh:mm:ss) : 10.00.00

PRINCIPALI RISULTATI

PORTATA (mc/s): VELOCITA' MEDIA (m/s): 0,062 0,345 VELOCITA' SUPERF. MAX (m/s) : 0,91 R (VEL.MEDIA/VEL.SUPERF.MAX) : 0,37

AREA (mq) : 0,18 CONTORNO BAGNATO 1,36 (m) : LARGHEZZA PELO LIBERO (m) : 1,1 ALTEZZA MASSIMA (m) : 0,28

METODOLOGIA APPLICATA

n. MULINELLO	ELICA (mm)	A	В	С	D	E	F	G	Н
1 M4AA-92767	100	1.03 1	0.00	.1322	.014	.1272	.019	.1272	.019
METODO/I DI M	ISURA	:	A11						
N. VERTICALI	DI MISURA	:		9					
N. PUNTI DI M	ISURA	:		13					

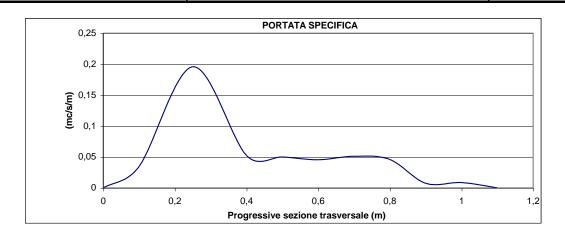
20

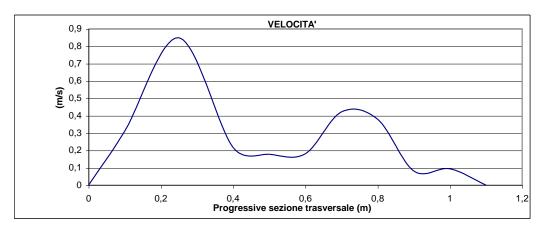
LETTURE RIFERIMENTI IDROMETRICI

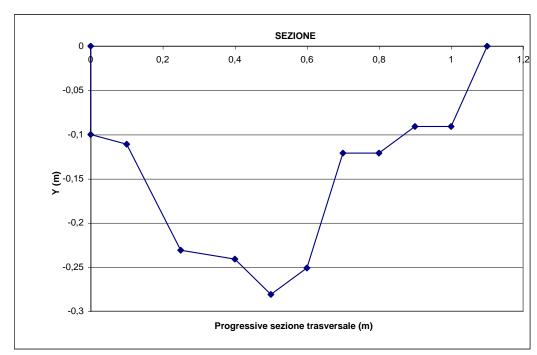
TEMPO DI MISURA MINIMO (s):

STAZIONE IDROMETRICA [AI] : ASTA ORA INIZIO (hh:mm:ss) : 10.00.00 (m) : LIVELLO INIZIALE 0,00 (hh:mm:ss): 10.20.00 ORA FINE 0,00 (m) : LIVELLO FINALE DIFFERENZA LIVELLI (m) : 0 DIFFERENZA LIVELLI (m): 0
STAZIONE IDROMETRICA [AI]: Hmonte (da asta)

ORA INIZIO (hh:mm:ss) : 10.00.00 (m) : LIVELLO INIZIALE -0,03 ORA FINE (hh:mm:ss): 10.20.00 LIVELLO FINALE (m): -0,03 DIFFERENZA LIVELLI (m): 0 -0,03


RILEVA	'ORE : N. TOLOMIERI	
ELABO	AZIONE:	
DATA		FIRMA




MISURE DI PORTATA METODO CORRENTOMETRICO ANDAMENTI GRAFICI

CLASSIFICAZIONE 1548H001

BMAAL

MISURE DI PORTATA METODO CORRENTOMETRICC DETTAGLIO ANALITICO DEI RISULTATI

CLASSIFICAZIONE 1548H001 BMAAL

Nb	Nv	М	X	Y	Nm	Ns	Ym	Vm	Vsup	Vv	Qv
			(m)	(m)			(m)	(m/s)	(m/s)	(m/s)	(mc/s)
_1			0,000	0,000							
2			0,000	0,100							
3	1	A11	0,100	0,111 C	1	1	0,060 I	0,318	0,382	0,311	0,007
4	2	A11	0,250	0,231 C	1	1	0,060 I	0,922			
					2	1	0,180 I	0,795	0,919	0,848	0,025
5	3	A11	0,400	0,241 C	1	1	0,060 I	0,356 I			
					2	1	0,120 I	0,126 I	0,427	0,217	0,009
6	4	A11	0,500	0,281 C	1	1	0,060 I	0,293 I			
					2	1	0,180 I	0,100 I	0,351	0,178	0,005
7	5	A11	0,600	0,251 C	1	1	0,060 I	0,235 I			
					2	1	0,150 I	0,153 I	0,282	0,181	0,005
8	6	A11	0,700	0,121 C	1	1	0,060 I	0,439	0,525	0,422	0,005
9	7	A11	0,800	0,121 C	1	1	0,060 I	0,394	0,472	0,379	0,004
10	8	A11	0,900	0,091 C	1	1	0,040 I	0,087	0,100	0,081	0,001
11	9	A11	1,000	0,091 C	1	1	0,040 I	0,100	0,115	0,094	0,001
12			1 100	0 000							

MISURE DI PORTATA METODO CORRENTOMETRICO **ELABORAZIONE**

CLASSIFICAZIONE 1548H002

BMAFE

DATI GENERALI

LOCALITA' DI MISURA : BORMIDA DI MALLARE A FERRANIA STAZIONE DI MISURA : BMAFE

DATA (gg-mm-aa) : 09/10/02

ORA (hh:mm:ss) : 11.30.00

PRINCIPALI RISULTATI

PORTATA (mc/s): VELOCITA' MEDIA (m/s): PORTATA 0,132 0,152 VELOCITA' SUPERF. MAX (m/s) : 0,41 R (VEL.MEDIA/VEL.SUPERF.MAX) : 0,36

(mq) : 0,87 CONTORNO BAGNATO 3,95 (m) : LARGHEZZA PELO LIBERO (m) : 3,8 ALTEZZA MASSIMA (m) : 0,3

METODOLOGIA APPLICATA

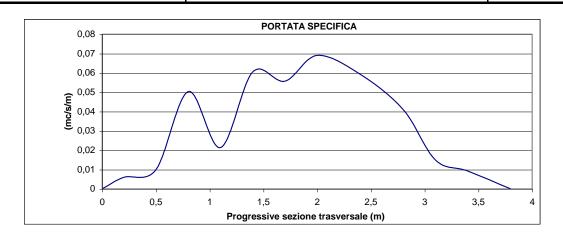
n. MULINELLO ELICA (mm) 1 M4AA-92767 100	A B 1.03 10.00	C .1322	D .014	E .1272	F .019	G .1272	Н .019
METODO/I DI MISURA	: A11						
N. VERTICALI DI MISURA	:	12					
N. PUNTI DI MISURA	:	20					

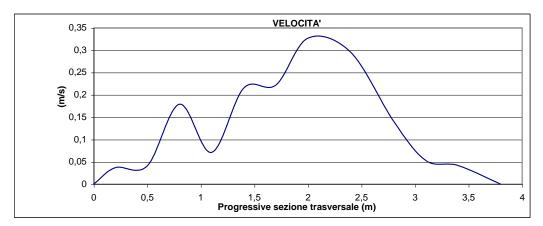
20

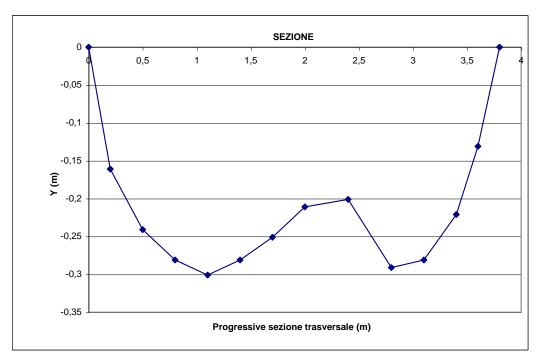
LETTURE RIFERIMENTI IDROMETRICI

TEMPO DI MISURA MINIMO (s):

STAZIONE IDROMETRICA [AI] : ASTA ORA INIZIO (hh:mm:ss): 11.30.00 (m) : LIVELLO INIZIALE 1,17 ORA FINE (hh:mm:ss): LIVELLO FINALE (m): 12.00.00 (m) : 1,17 DIFFERENZA LIVELLI (m) :


DU EL ATORE	N TO OMIERI	
RILEVATORE:	n. Tolomieri	
ELABORAZIONE:		
DATA		FIRMA




MISURE DI PORTATA METODO CORRENTOMETRICO ANDAMENTI GRAFICI

CLASSIFICAZIONE 1548H002

BMAFE

MISURE DI PORTATA METODO CORRENTOMETRICO DETTAGLIO ANALITICO DEI RISULTATI

CLASSIFICAZION 1548H002

BMAF

Nb	Nv	М	X (m)	Y (m)	Nm	Ns	Ym (m)	Vm (m/s)	Vsup (m/s)	Vv (m/s)	Qv (mc/s)
1			0,000	0,000							
2	1	A11	0,200	0,161 C	1	1	0,060 I	0,040	0,045	0,037	0,001
3	2	A11	0,500	0,241 C	1	1	0,060 I	0,047	0,050	0,041	0,004
4	3	A11	0,800	0,281 C	1	1	0,060 I	0,216 I			
					2	1	0,190 I	0,159 I	0,260	0,179	0,013
5	4	A11	1,100	0,301 C	1	1	0,060 I	0,060 I			
<u> </u>					2	1	0,200 I	0,087 I	0,048	0,071	0,008
6	5	A11	1,400	0,281 C	1_	1	0,060 I	0,267 I			
_					2	1	0,190 I	0,184 I	0,321	0,215	0,017
7	6	A11	1,700	0,251 C	1_	1	0,060 I	0,305 I			
					2	1	0,140 I	0,178 I	0,366	0,222	0,017
8	7	A11	2,000	0,211 C	1	1	0,040 I	0,356			
_					2	1_	0,135 I	0,337	0,328	0,327	0,024
9	8	A11	2,400	0,201 C	1	1	0,060 I	0,343 I			
_	_				2	_1	0,125 I	0,267 I	0,412	0,295	0,025
10	9	A11	2,800	0,291 C	1		0,060 I	0,159	0 166	0 1 4 1	0.015
1.1	1.0	2 1 1	2 100	0 001 0	<u>2</u> 1		0,210 I	0,133	0,166	0,141	0,015
11	10	A11	3,100	0,281 C			0,060 I	0,067 I	0.000	0.050	0.005
12	11	A11	3,400	0,221 C	<u>2</u> 1	1	0,170 I 0,060 I	0,047 I 0,047	0,080	0,053	0,005
13				0,221 C	1	1	0,060 I	0,047	0,030	0,042	0,002
14	12	WII	3,800	0,000			U, UJJ I	0,000	0,000	0,000	0,000

MISURE DI PORTATA METODO CORRENTOMETRICO **ELABORAZIONE**

CLASSIFICAZIONE 1548H003

BPAFO

DATI GENERALI

LOCALITA' DI MISURA : BORMIDA DI PALLARE A FORNELLI STAZIONE DI MISURA : BPAFO
DATA (gg-mm-aa) : 09/10/02
ORA (hh:mm:ss) : 12.40.00

PRINCIPALI RISULTATI

PORTATA (mc/s): VELOCITA' MEDIA (m/s): PORTATA 0,063 0,069 VELOCITA' SUPERF. MAX (m/s) : 0,08 R (VEL.MEDIA/VEL.SUPERF.MAX) : 0,82

AREA (mq) : 0,9 CONTORNO BAGNATO 3,95 (m) : LARGHEZZA PELO LIBERO (m) : 3,7 ALTEZZA MASSIMA (m) : 0,37

METODOLOGIA APPLICATA

n. MULINELLO	ELICA (mm)	A	В	С	D	E	F	G	Н
1 M4AA-92767	100	1.03 1	0.00	.1322	.014	.1272	.019	.1272	.019
METODO/I DI MIS	SURA	:	A11						
N. VERTICALI D	I MISURA	:		11					

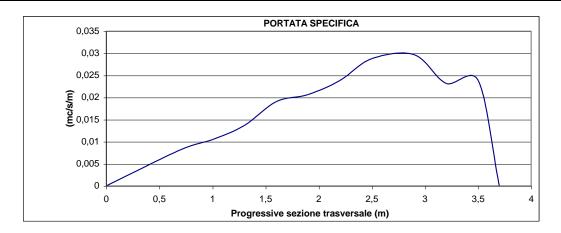
N. PUNTI DI MISURA 21 TEMPO DI MISURA MINIMO (s): 30

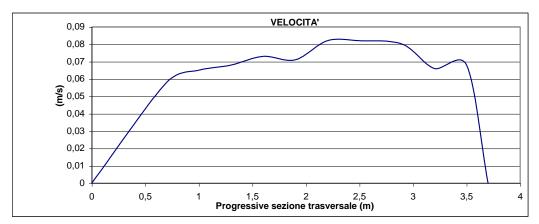
LETTURE RIFERIMENTI IDROMETRICI

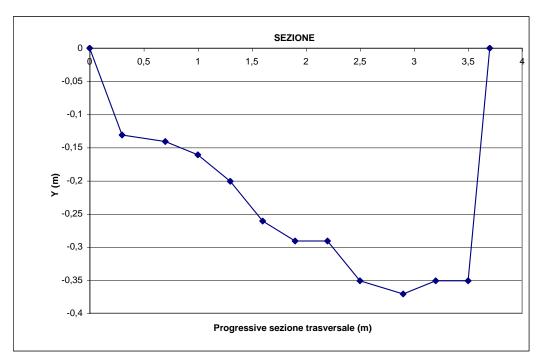
STAZIONE IDROMETRICA [AI] : ASTA ORA INIZIO (hh:mm:ss): 12.40.00 (m) : LIVELLO INIZIALE 0,06 (m):

CAM FINE (hh:mm:ss):

LIVELLO FINALE (m) 13.10.00 0,06 DIFFERENZA LIVELLI (m) :


RILEVATORE:	N. TOLOMIERI	
ELABORAZIONE:		
DATA		FIRMA




MISURE DI PORTATA METODO CORRENTOMETRICO ANDAMENTI GRAFICI

CLASSIFICAZIONE 1548H003

BPAFO

MISURE DI PORTATA METODO CORRENTOMETRICC DETTAGLIO ANALITICO DEI RISULTATI

CLASSIFICAZIONE 1548H003

BPAFO

_			1								
Nb	Nv	М	X	Y	Nm	Ns	Υm	Vm	Vsup	Vv	Qv
			(m)	(m)			(m)	(m/s)	(m/s)	(m/s)	(mc/s)
1			0,000	0,000							
2	1	A11	0,300	0,131 C	1	1	0,055 I	0,000	0,000	0,000	0,000
3	2	A11	0,700	0,141 C	1	1	0,060 I	0,062	0,072	0,058	0,003
4	3	A11	1,000	0,161 C	1	1	0,060 I	0,071	0,080	0,065	0,003
5	4	A11	1,300	0,201 C	1	1	0,060 I	0,076	0,082	0,068	0,004
6	5	A11	1,600	0,261 C	1	1	0,060 I	0,080			
					2	1	0,185 I	0,071	0,078	0,073	0,006
7	6	A11	1,900	0,291 C	1	1	0,060 I	0,080			
					2	1	0,215 I	0,067	0,083	0,071	0,006
8	7	A11	2,200	0,291 C	1	1	0,060 I	0,084			
					2	1	0,215 I	0,084	0,069	0,082	0,007
9	8	A11	2,500	0,351 C	1	1	0,060 I	0,084			
					2	1	0,275 I	0,080	0,078	0.082	0,010
10	9	A11	2,900	0,371 C	1	1	0,050 I	0,089			
					2	1	0,170	0,089			
					3	1	0,295 I	0,071	0,084	0,080	0,010
11	10	A11	3,200	0,351 C	1	1	0,070 I	0,093			
					2	1	0,150	0,089 I			
					3	1	0,275 I	0,036 I	0,075	0,066	0,007
12	11	A11	3,500	0,351 C	1	1	0,060 I	0,093			
					2	1	0,180	0,080 I			
					3	1	0,275 I	0,036 I	0,075	0,068	0,006
1.3			3,700	0.000							

MISURE DI PORTATA METODO CORRENTOMETRICO **ELABORAZIONE**

CLASSIFICAZIONE 1548H004

BOMMU

DATI GENERALI

LOCALITA' DI MISURA : BORMIDA DI MILLESIMO A MURIALDO STAZIONE DI MISURA : BOMMU

DATA (gg-mm-aa) : 09/10/02

ORA (hh:mm:ss) : 13.40.00

PRINCIPALI RISULTATI

PORTATA (mc/s): VELOCITA' MEDIA (m/s): PORTATA 0,649 0,146 VELOCITA' SUPERF. MAX (m/s) : 0,34 R (VEL.MEDIA/VEL.SUPERF.MAX) : 0,42

AREA (mq) : 4,45 CONTORNO BAGNATO (m) : 15**,**57 LARGHEZZA PELO LIBERO (m) : 15,3 ALTEZZA MASSIMA (m) : 0,51

METODOLOGIA APPLICATA

n. MULINELLO	ELICA	(mm)	A	В	С	D	E	F	G	Н
1 M4AA-92767	100		1.03	10.00	.1322	.014	.1272	.019	.1272	.019
METODO/I DI MI	ISURA		:	A11						
N. VERTICALI I	OI MISU	RA	:		20					
N. PUNTI DI M	ISURA		:		41					

20

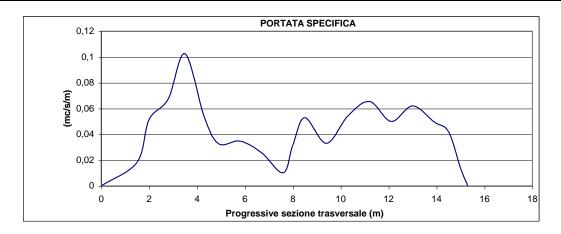
LETTURE RIFERIMENTI IDROMETRICI

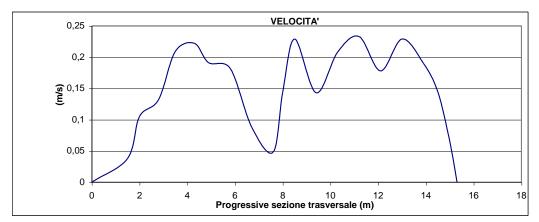
TEMPO DI MISURA MINIMO (s):

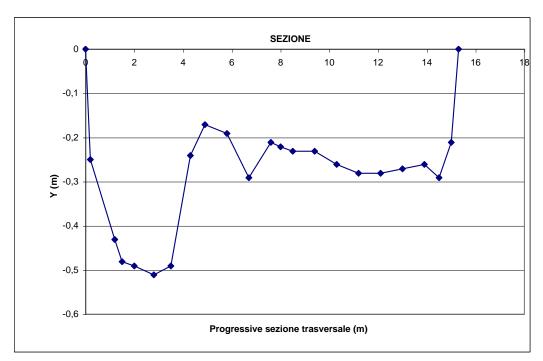
STAZIONE IDROMETRICA [AI] : ASTA ORA INIZIO (hh:mm:ss): 13.40.00 (m) : LIVELLO INIZIALE 0,22 (m):

CAM FINE (hh:mm:ss):

LIVELLO FINALE (m) 14.20.00 0,22 DIFFERENZA LIVELLI (m) :


RILEVATORE:	N. TOLOMIERI	
ELABORAZIONE:		
DATA		FIRMA




MISURE DI PORTATA METODO CORRENTOMETRICO ANDAMENTI GRAFICI

CLASSIFICAZIONE 1548H004

BOMMU

MISURE DI PORTATA METODO CORRENTOMETRICO DETTAGLIO ANALITICO DEI RISULTATI

CLASSIFICAZIONE 1548H004

BOMMU

Nb	Nv	М	X	Y	Nm	Ns	Ym	Vm	Vsup	Vv	Qv
			(m)	(m)			(m)	(m/s)	(m/s)	(m/s)	(mc/s)
1			0,000	0,000							
2			0,200	0,250							
3	1	A11	1,200	0,431 C	1	1	0,060 I	0,000	0,000	0,000	0,000
4	2	A11	1,500	0,481 C	1	1	0,060 I	0,027 I			
					2	1	0,210	0,040 I			
					3	1	0,360 I	0,047	0,026	0,038	0,009
5	3	A11	2,000	0,491 C	1	1	0,060 I	0,126 I			
					2	1	0,270	0,093 I			
					3	1	0,415 I	0,106	0,152	0,105	0,034
6	4	A11	2,800	0,511 C	1	1	0,060 I	0,133			
					2	1	0,290	0,139			
					3	1	0,435 I	0,133	0,154	0,132	0,051
7	5	A11	3,500	0,491 C	1	1	0,060 I	0,229			
					2	1	0,270	0,216			
					3	1	0,415 I	0,191	0,252	0,209	0,071
8	6	A11	4,300	0,241 C	1	1	0,060 I	0,254			
					2	1	0,160 I	0,210	0,288	0,222	0,042
9	7	A11	4,900	0,171 C	1	1	0,060 I	0,210	0,233	0,191	0,026
10	8	A11	5,800	0,191 C	1	1	0,060 I	0,216 I			
					2	1	0,110 I	0,159 I	0,260	0,182	0,032
11	9	A11	6,700	0,291 C	1	1	0,060 I	0,120 I			
					2	1	0,170 I	0,073 I	0,144	0,088	0,021
12	10	A11	7,600	0,211 C	1	1	0,060 I	0,054			
			•		2	1	0,130 I		0,059	0,048	0,006
13	11	A11	8,000	0,221 C	1	1	0,060 I	0,184 I			
					2	1	0,145 I	0,113 I	0,221	0,144	0,015
14	12	A11	8,500	0,231 C	1	1	0,060 I	0,274 I			
					2	1	0,150 I	0,204 I	0,328	0,229	0,035
15	13	A11	9,400	0,231 C	1	1	0,060 I	0,165			
					2	1	0,150 I	0,133	0,198	0,143	0,033
16	14	A11	10,300	0,261 C	1	1	0,060 I	0,248 I			
					2	1	0,180 I	0,184 I	0,298	0,208	0,048
17	15	A11	11,200	0,281 C	1	1	0,060 I	0,286 I			
					2	1	0,200 I	0,197 I	0,343	0,233	0,057
18	16	A11	12,100	0,281 C	1	1	0,060 I	0,216 I			
					2	1	0,200 I	0,153 I	0,260	0,178	0,047
19	17	A11	13,000	0,271 C	1	1	0,060 I	0,286 I			
					2	1	0,190 I	0,191 I	0,343	0,229	0,054
20	18	A11	13,900	0,261 C	1	1	0,040 I	0,254 I			
					2	1	0,180 I	0,159 I	0,305	0,190	0,039
21	19	A11	14,500	0,291 C	1	1	0,060 I	0,184 I			
					2	1	0,200 I	0,120 I	0,221	0,144	0,022
22	20	A11	15,000	0,211 C	1	1	0,060 I	0,073	0.079	0,065	0,006
23			15,300	0,000							

MISURE DI PORTATA METODO CORRENTOMETRICO **ELABORAZIONE**

CLASSIFICAZIONE 1548H005

BOMCE

DATI GENERALI

LOCALITA' DI MISURA : BORMIDA DI MILLESIMO A CENGIO STAZIONE DI MISURA : BOMCE

DATA (gg-mm-aa) : 09/10/02

ORA (hh:mm:ss) : 15.00.00

PRINCIPALI RISULTATI

PORTATA (mc/s):
VELOCITA' MEDIA (m/s): 1,062 0,919 0,97 VELOCITA' SUPERF. MAX (m/s) : R (VEL.MEDIA/VEL.SUPERF.MAX) : 0,94

(mq) : 1,15 CONTORNO BAGNATO (m) : 5,4 LARGHEZZA PELO LIBERO (m) : 5 ALTEZZA MASSIMA (m) : 0,25

METODOLOGIA APPLICATA

n. MULINELLO E	LICA (mm)	A	В	С	D	E	F	G	Н
1 M4AA-92767	100	1.03 1	0.00	.1322	.014	.1272	.019	.1272	.019
METODO/I DI MIS	URA	:	A11						
N. VERTICALI DI	MISURA	:		11					
N. PUNTI DI MIS	URA	:		22					

20

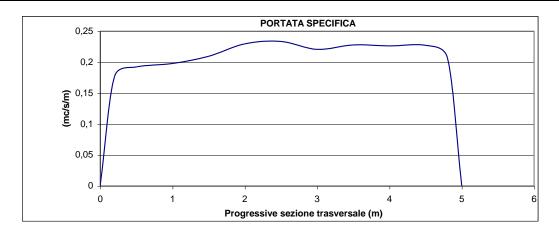
0

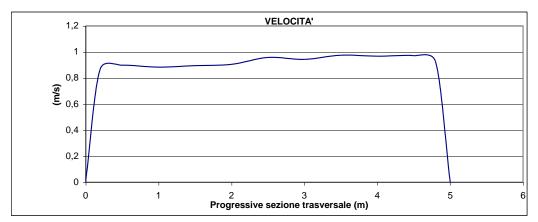
LETTURE RIFERIMENTI IDROMETRICI

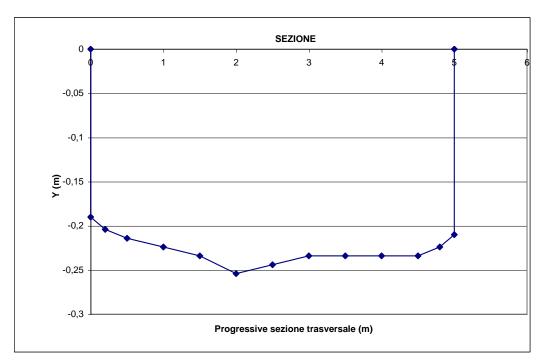
TEMPO DI MISURA MINIMO (s) :

STAZIONE IDROMETRICA [AI] : ASTA (ponte a monte) ORA INIZIO (hh:mm:ss) : 15.00.00 (m) : LIVELLO INIZIALE 0,77 (m):
...EINE (hh:mm:ss):
LIVELLO FINALE
DIFFERENCE 15.30.00 0,77 DIFFERENZA LIVELLI (m) : DIFFERENZA LIVELLI (m): 0
STAZIONE IDROMETRICA [AI]: H1 (sommità soglia)

ORA INIZIO (hh:mm:ss) : 15.00.00 (m) : LIVELLO INIZIALE -0,41 ORA FINE (hh:mm:ss):
LIVELLO FINALE (m):
DIFFERENZA LIVELLI (m): 15.30.00 -0,41


RILEVATORE:	N. TOLOMIERI	
ELABORAZIONE:		
DATA		FIRMA




MISURE DI PORTATA METODO CORRENTOMETRICO ANDAMENTI GRAFICI

CLASSIFICAZIONE 1548H005

BOMCE

MISURE DI PORTATA METODO CORRENTOMETRICO DETTAGLIO ANALITICO DEI RISULTATI

CLASSIFICAZIONE 1548H005

BOMCE

Nb	Nv	М	Х	Y	Nm	Νe	Ym	Vm	Vsup	Vv	Οv
1112	14.0	1.1	(m)	(m)	INILL	143	(m)	(m/s)	(m/s)	(m/s)	(mc/s)
1			0,000	0,000							
2			0,000	0,190							
3	1	A11	0,200	0,204 C	1	1	0,060 I	0,910			
					2	1	0,130 I	0,973	0,728	0,867	0,057
4	2	A11	0,500	0,214 C	1	1	0,060 I	0,979			
					2	1	0,140 I	0,948	0,817	0,898	0,077
5	3	A11	1,000	0,224 C	1	1	0,060 I	0,935			
					2	1	0,150 I	0,954	0,748	0,883	0,099
6	4	A11	1,500	0,234 C	1	1	0,060 I	0,967			
					2	1	0,160 I	0,929	0,822	0,895	0,105
7	5	A11	2,000	0,254 C	1	1	0,060 I	0,973			
					2	1	0,180 I	0,916	0,863	0,904	0,114
8	6	A11	2,500	0,244 C	1	1	0,060 I	1,037			
					2	1	0,170 I	0,973	0,925	0,957	0,116
9	7	A11	3,000	0,234 C	1	1	0,060 I	1,037			
					2	1	0,160 I	0,948	0,977	0,943	0,111
10	8	A11	3,500	0,234 C	1	_1	0,060 I	1,062			
					2	1	0,160 I	0,992	0,959	0,974	0,114
11	9	A11	4,000	0,234 C	1	1_	0,060 I	1,018			
					2	1	0,160 I	1,037	0,814	0,967	0,113
12	10	A11	4,500	0,234 C	1_	1_	0,060 I	1,049			
<u> </u>					2	1	0,160 I	1,005	0,898	0,971	0,090
13	11	A11	4,800	0,224 C	1	1	0,060 I	0,948			
					2	1	0,150 I	1,030	0,758	0,926	0,066
14			5,000	0,210							
15			5,000	0,000						Į	

MISURE DI PORTATA METODO CORRENTOMETRICO **ELABORAZIONE**

CLASSIFICAZIONE 1266H096

BOMMU

DATI GENERALI

LOCALITA' DI MISURA : MURIALDO BORMIDA DI MILLESIMO STAZIONE DI MISURA : BOMMU

DATA (gg-mm-aa) : 20/03/02

ORA (hh:mm:ss) : 11.20.00

PRINCIPALI RISULTATI

PORTATA (mc/s): VELOCITA' MEDIA (m/s): PORTATA 2,53 0,361 VELOCITA' SUPERF. MAX (m/s) : 0,6 0,59 R (VEL.MEDIA/VEL.SUPERF.MAX) :

(mq) : 7,01 CONTORNO BAGNATO (m) : 14,22 LARGHEZZA PELO LIBERO (m) : 14 ALTEZZA MASSIMA (m) : 0,82

METODOLOGIA APPLICATA

n. MULINELLO ELICA (mm) A B	С	D	E	F	G	Н
1 M1AA-92767 100	1.03 10.00	.1322	.014	.1272	.019	.1272	.019
METODO/I DI MISURA	: A11						
N VERTICALL DI MISHRA	•	2.4					

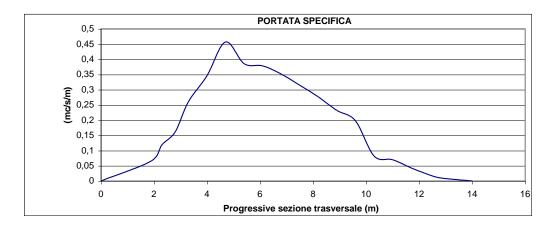
N. VERTICALI DI MISURA N. PUNTI DI MISURA 57 TEMPO DI MISURA MINIMO (s): 2.0

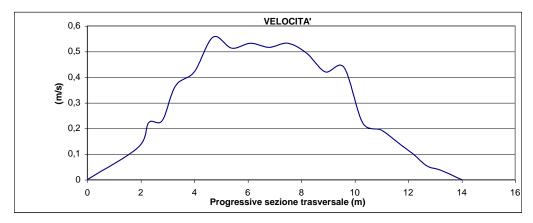
LETTURE RIFERIMENTI IDROMETRICI

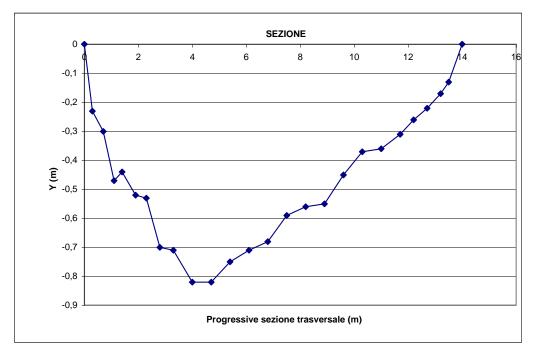
STAZIONE IDROMETRICA [AI] : ASTA ORA INIZIO (hh:mm:ss): 11.20.00 (m) : LIVELLO INIZIALE 0,46 (m):

CAR FINE (hh:mm:ss):

LIVELLO FINALE (~) 12.00.00 0,46 DIFFERENZA LIVELLI (m) :


DU EL ATORE	N TO OMIERI	
RILEVATORE:	n. Tolomieri	
ELABORAZIONE:		
DATA		FIRMA



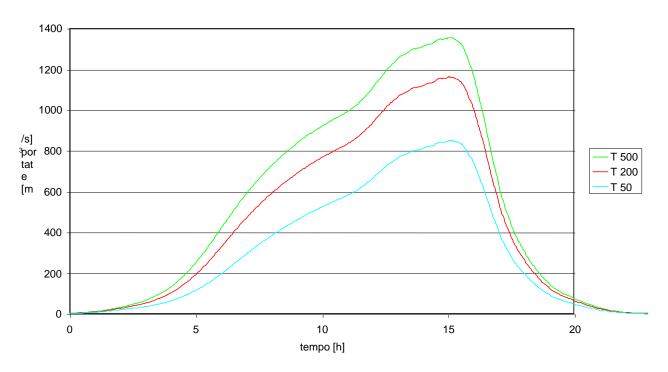

MISURE DI PORTATA METODO CORRENTOMETRICO ANDAMENTI GRAFICI

CLASSIFICAZIONE 1266H096

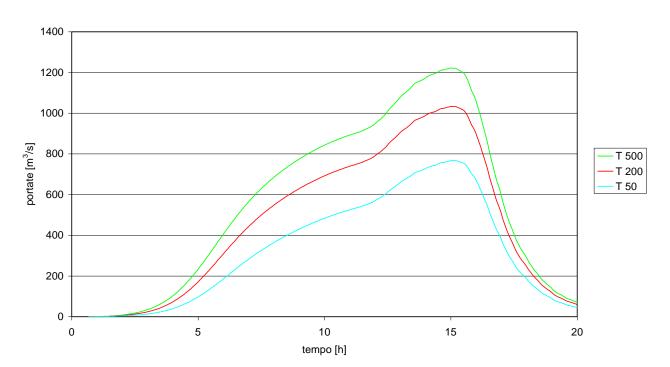
BOMMU

MISURE DI PORTATA METODO CORRENTOMETRICO DETTAGLIO ANALITICO DEI RISULTATI

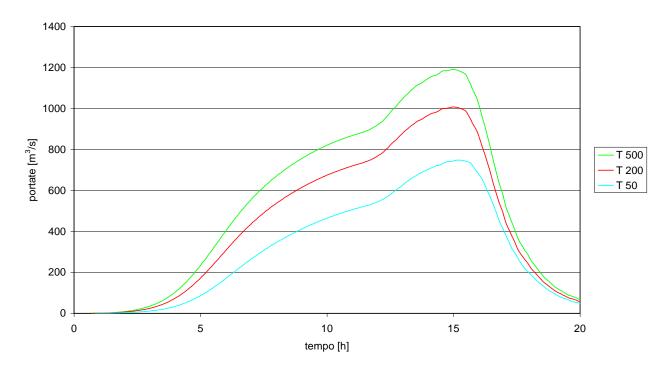
CLASSIFICAZIONE 1266H096 BOMMU

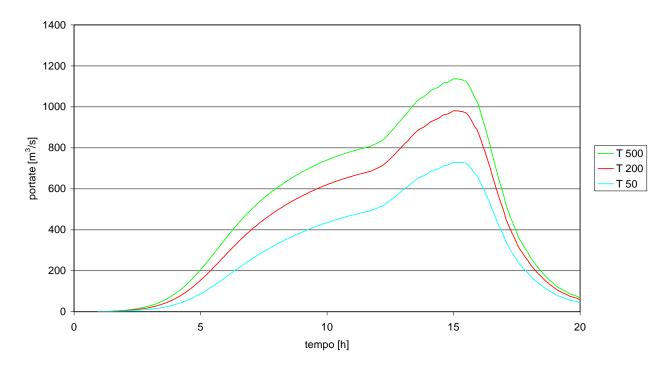

			X	Y			Ym	Vm	Vsup	Vv	Qv
Nb	Nv	М	(m)	(m)	Nm	Ns	(m)	(m/s)	(m/s)	(m/s)	(mc/s)
1			0,000	0,000			(111)	(111/5)	(1117 5)	(111/3)	(111073)
2	1	A11	0,000	0,000 0,231 C	1	1	0,060 I	0,000	0,000	0,000	0,000
3	2		0,300	0,231 C	1	1			0,000	0,000	0,000
4	2	All	1,100	0,301 C	1	1	0,060 I	0,000	0,000	0,000	0,000
5	4	A11	1,400	0,471 C	1	1			0,000	0,000	0,000
6	_	A11	1,400	0,441 C	1	1		0,000 I	0,000	0,000	0,002
- 0	J	AII	1,900	0,321 C	2	1	0,000 1	0,100 I			
					3	1		0,133	0,085	0,126	0,027
7	6	A11	2,300	0,531 C	1	1	0,060 I	0,133	0,000	0,120	0,027
	0	ATT	2,300	0,331 0	2	1		0,172 I			
					3	1	0,230 I	0,242 1	0,185	0,223	0,054
8	7	A11	2,800	0,701 C	1	1		0,299 I	0,103	0,223	0,034
		TIT	2,000	0,701 0	2	1	0,400	0,229 I			
					3	1	0,600 I	0,223 I	0 248	0,230	0,082
9	8	A11	3,300	0,711 C	1	1	0,060 I	0,337 I	0/210	0/230	0,002
		717.7	37300	0,711 0	2	1	0,410	0,458 I			
					3	1		0,438 I	0.270	0,366	0,159
10	9	A11	4,000	0,821	1	1	0,010 I	0,137 I	J, 2, 10	3,300	,
			1,000		2	1		0,483 I			
					3	1	0,520	0,496 I			
					4	1	0,720 I	0,363 I	0,263	0,421	0,244
11	10	A11	4,700	0,821	1	1		0,642		.,,	
			-,		2	1	0,290	0,630 I			
					3	1	0,520	0.490 T			
					4	1	0,720 I	0,483	0,578	0,556	0,308
12	11	A11	5,400	0,751 C	1	1		0,585			
					2	1	0,260	0,566			
					3	1	0,460	0,464			
					4	1	0,650 I	0,471	0.533	0,513	0,275
13	12	A11	6,100	0,711 C	1	1	0,060 I	0,598			·
			·		2	1	0,410	0,553 I			
					3	1	0,610 I	0,439 I	0,603	0,532	0,263
14	13	A11	6,800	0,681 C	1	1	0,060 I	0,585			
					2	1	0,380	0,541 I			
					3	1	0,580 I	0,413 I	0,575	0,516	0,245
15	14	A11	7,500	0,591 C	1	1	0,130	0,604			
					2	1	0,340	0,553			
					3	1	0,490 I	0,445	0,593	0,532	0,222
16	15	A11	8,200	0,561 C	1	1	0,060 I	0,579			
					2	1	0,260	0,553 I			
					3	1	0,460 I	0,382 I	0,537	0,493	0,193
17	16	A11	8,900	0,551 C	_1	_1	0,060 I	0,528			
ļ					2	1	0,260	0,426			
<u> </u>					3	1			0,583	0,420	0,162
18	17	A11	9,600	0,451 C	1	1	0,060 I	0,483 I			
<u> </u>					2	1	0,210	0,343 I			
<u> </u>					3	_1	0,350 I	0,528 I	0,580	0,438	0,135
19	18	A11	10,300	0,371 C	_1	_1	0,060 I				
<u> </u>					2	_1	0,270 I	0,261 I	0,142	0,221	0,062
20	19	A11	11,000	0,361 C	_1	_1	0,060 I	0,216			
					2	1	0,260 I	0,184	0,219	0,193	0,047
21	20	A11	11,700	0,311 C	1	1	0,060 I				
<u> </u>					2	1	0,235 I		0,206	0,138	0,027
22	21	A11	12,200	0,261 C	1	1		0,106			
					2	1_		0,100	0,095	0,099	0,013
23	22	A11	12,700	0,221 C	_1	_1	0,060 I	0,060	0,065	0,053	0,006
24	23	A11	13,200	0,171 C	_1	_1	0,060 I	0,040	0,045	0,037	0,003
25	24	A11	13,500	0,131 C	1	1	0,055 I	0,000	0,000	0,000	0,000
26			14,000	0,000							L

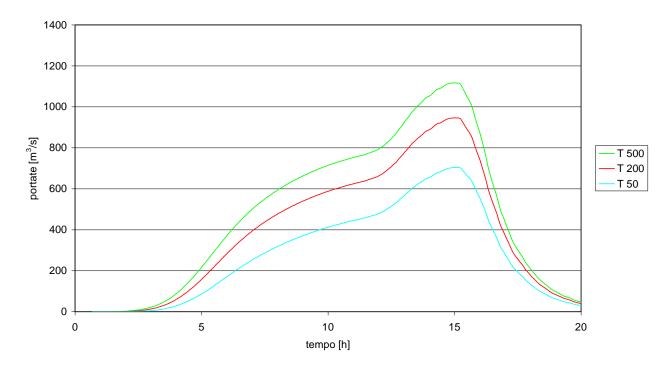
ALLEGATO 2

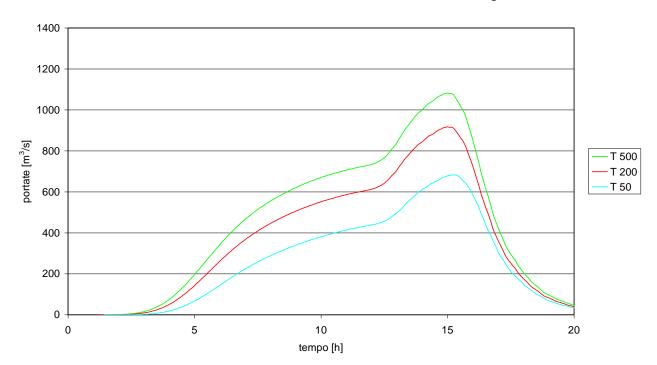

Idrogrammi di piena di assegnto tempo di ritorno nelle sezioni di riferimento.

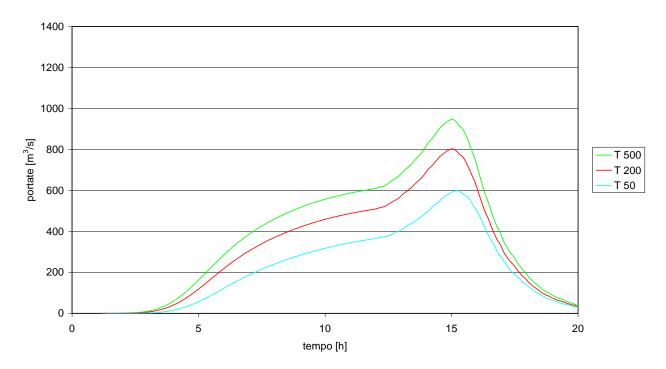
BORMIDA DI MILLESIMO E RELATIVI AFFLUENTI

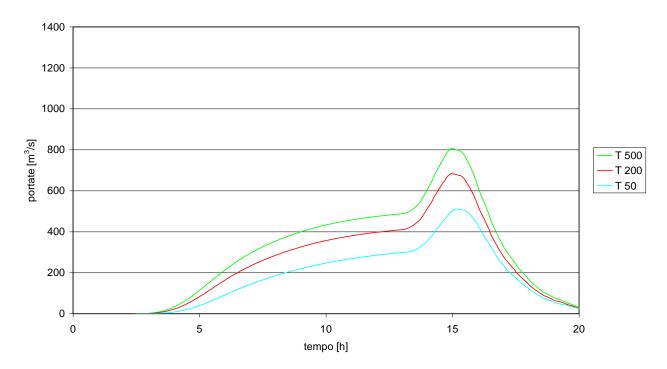

Bormida di Millesimo - Sezione al confine con il Piemonte

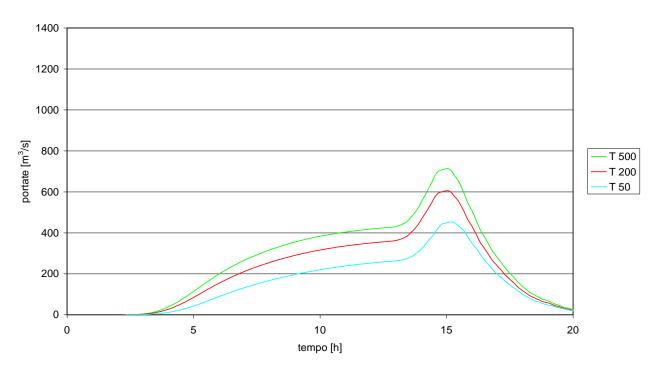

Bormida di Millesimo - Sezione a valle confluenza Torrente Giacchetti

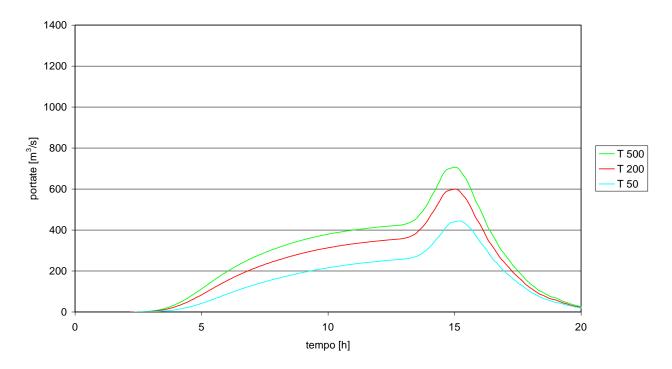

Bormida di Millesimo - Sezione a monte confluenza Torrente Giacchetti

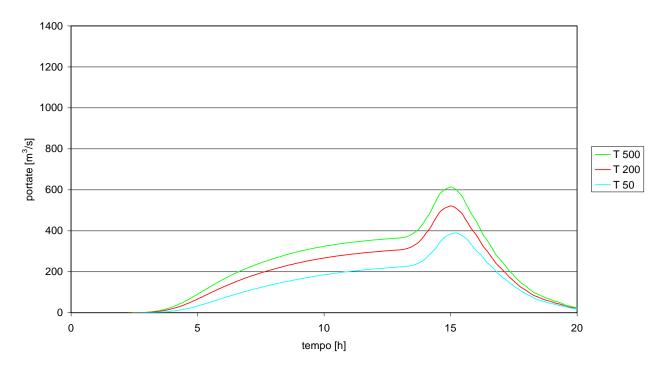

Bormida di Millesimo - Sezione a valle confluenza Torrente Zemola

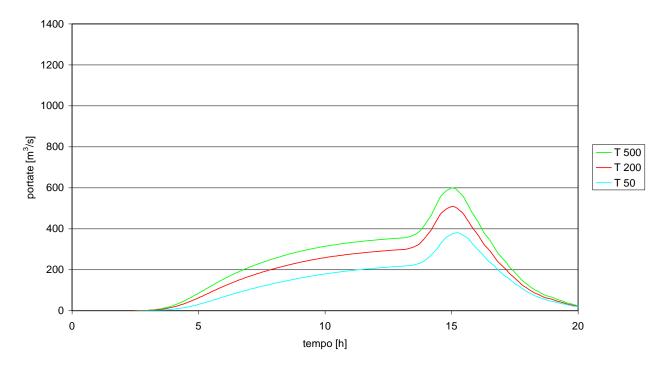

Bormida di Millesimo - Sezione a monte confluenza Torrente Zemola

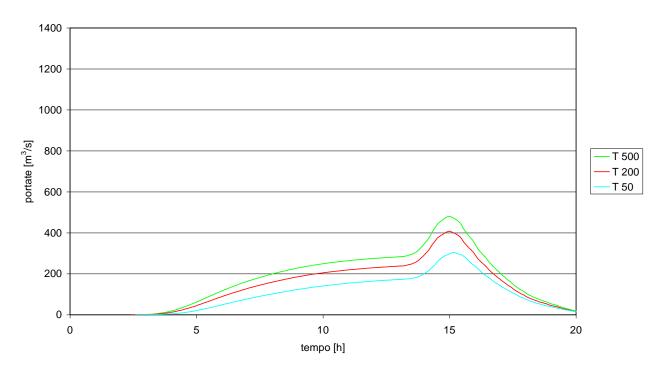

Bormida di Millesimo - Sezione a valle confluenza Torrente Osiglietta

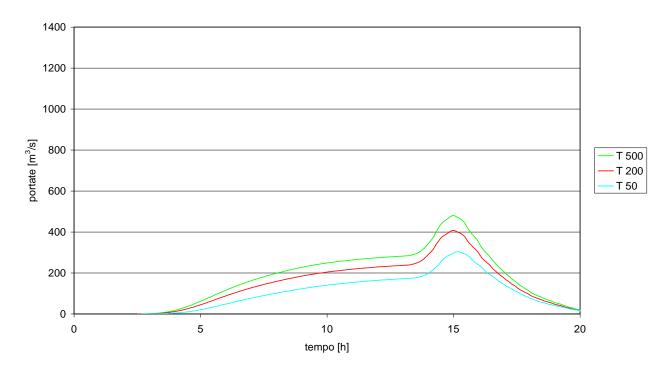

Bormida di Millesimo - Sezione a monte confluenza Torrente Osiglietta

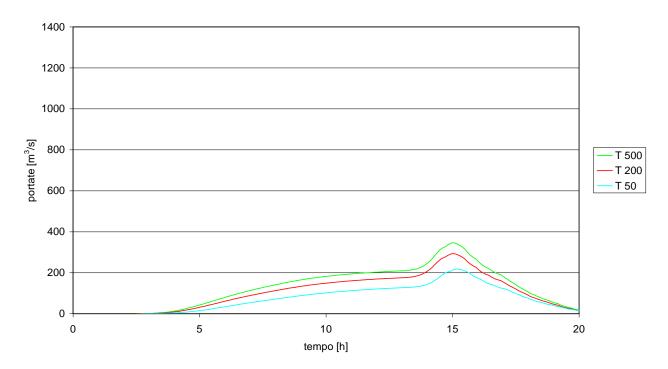

Bormida di Millesimo - Sezione a valle confluenza Rio Siondo

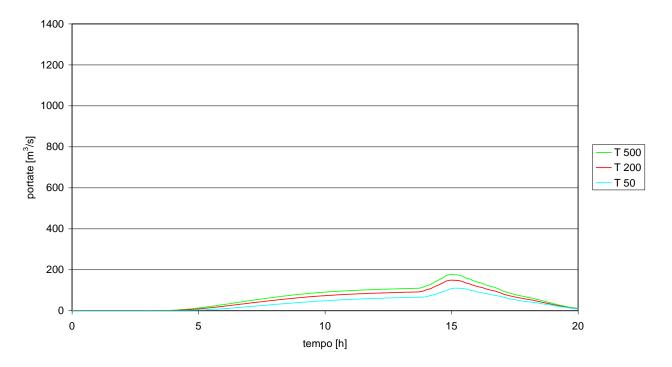

Bormida di Millesimo - Sezione a monte confluenza Rio Siondo

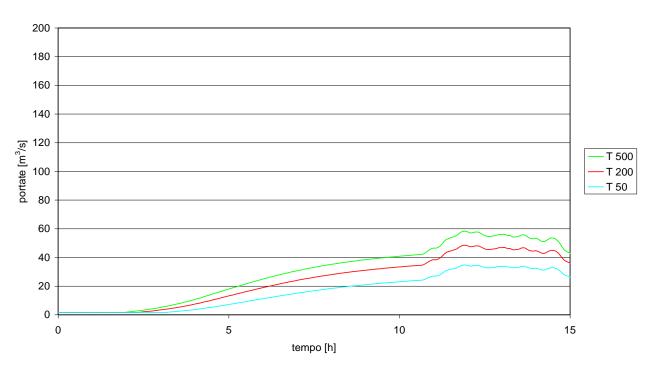

Bormida di Millesimo - Sezione a valle confluenza Rio Vetria

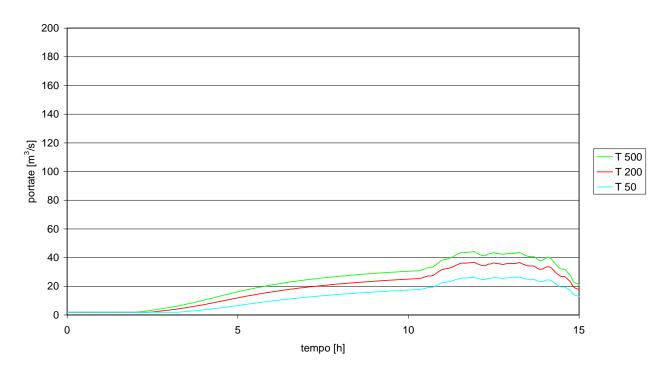

Bormida di Millesimo - Sezione a monte confluenza Rio Vetria

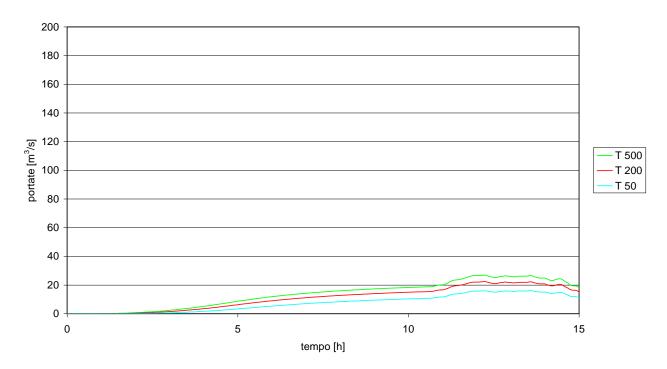

Bormida di Millesimo - Sezione a valle confluenza Torrente Frassino

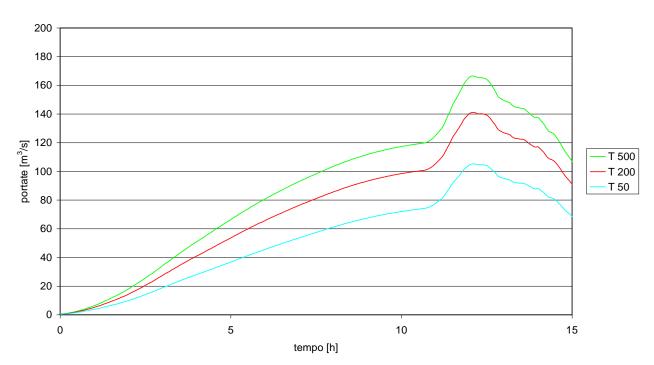

Bormida di Millesimo - Sezione a monte confluenza Torrente Frassino

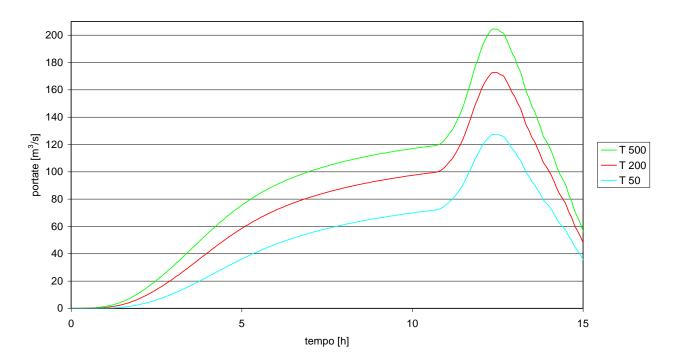

Bormida di Millesimo - Sezione a valle confluenza Rio Valle

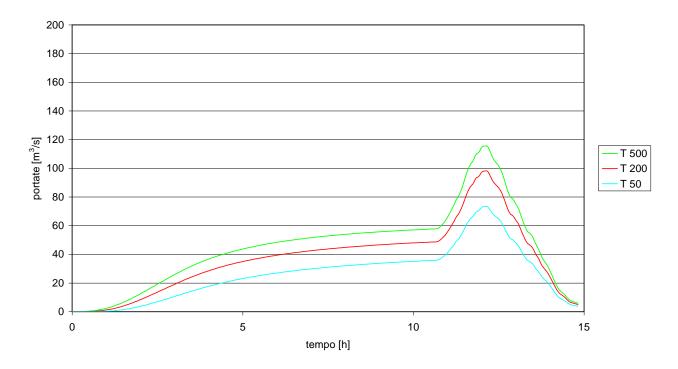

Bormida di Millesimo - Sezione a monte confluenza Rio Valle

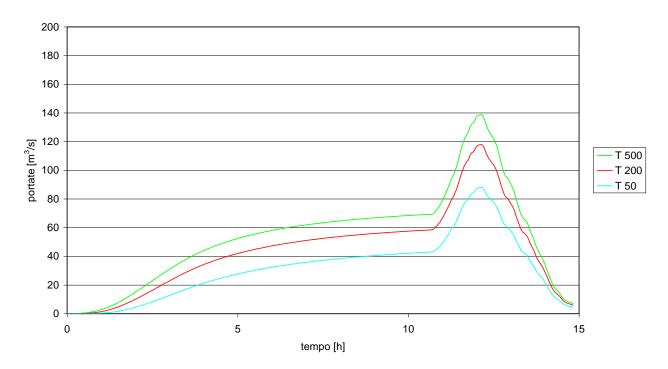

Bormida di Millesimo - Sezione a valle confluenza Rio San Giovanni

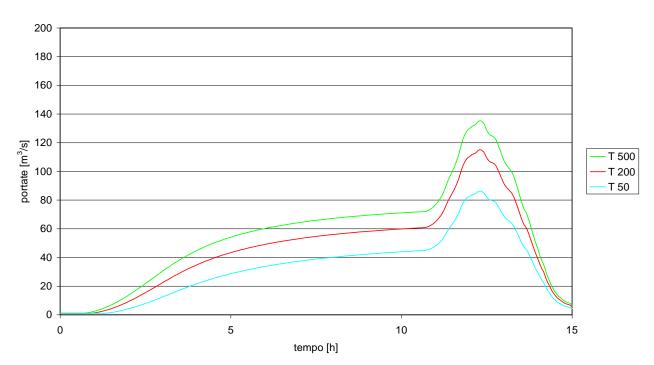

Rio Giacchetti - Sezione a monte confluenza Bormida di Millesimo

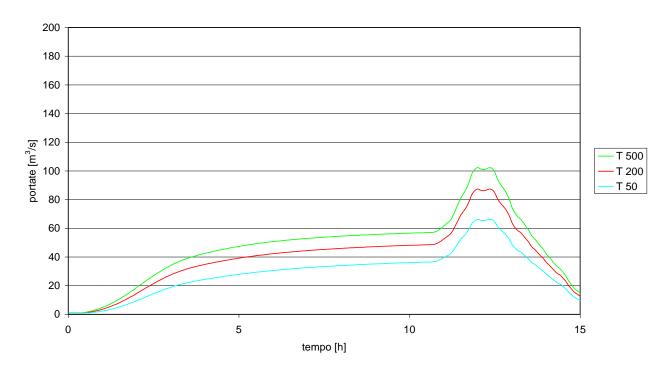

Rio Giacchetti - Sezione a monte confluenza Rio Rocchetta


Rio Rocchetta - Sezione a monte confluenza Rio Giacchetti


Torrente Zemola - Sezione a monte confluenza Bormida di Millesimo


Torrente Osiglietta - Sezione a monte confluenza Bormida di Millesimo

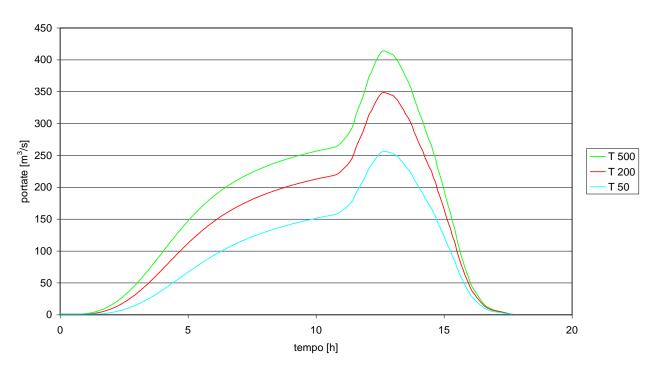

Rio Siondo - Sezione a monte confluenza Bormida di Millesimo


Rio Vetria - Sezione a monte confluenza Bormida di Millesimo

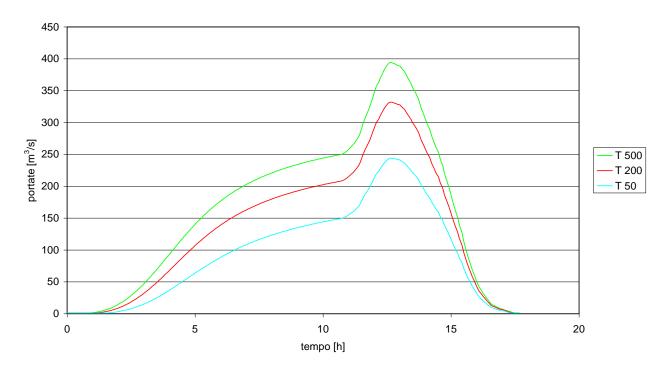
Torrente Frassino - Sezione a monte confluenza Bormida di Millesimo

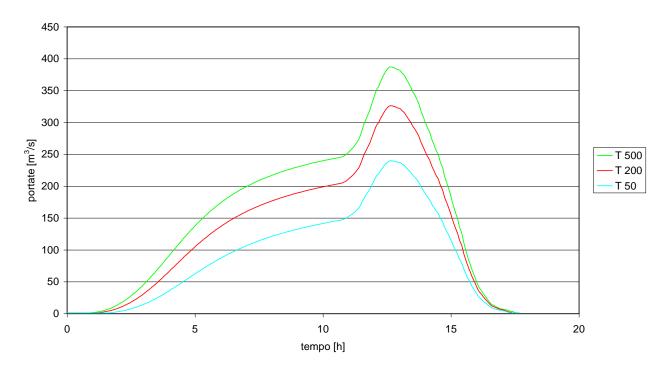


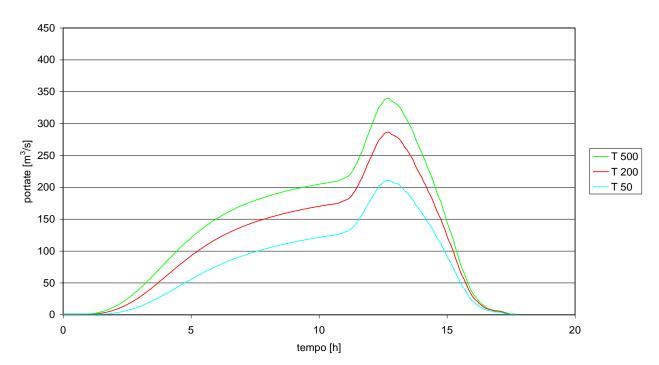
Rio Valle - Sezione a monte confluenza Bormida di Millesimo

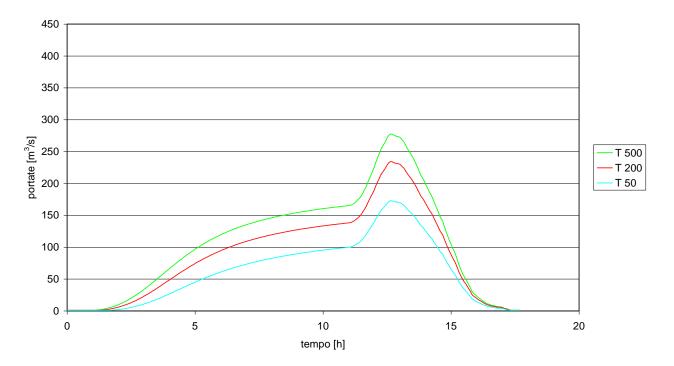


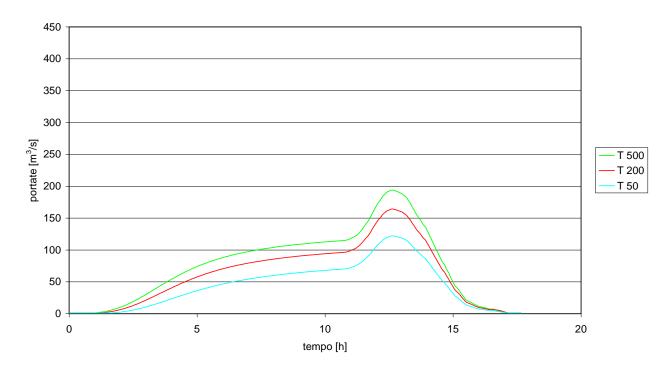
BORMIDA DI PALLARE E RELATIVI AFFLUENTI

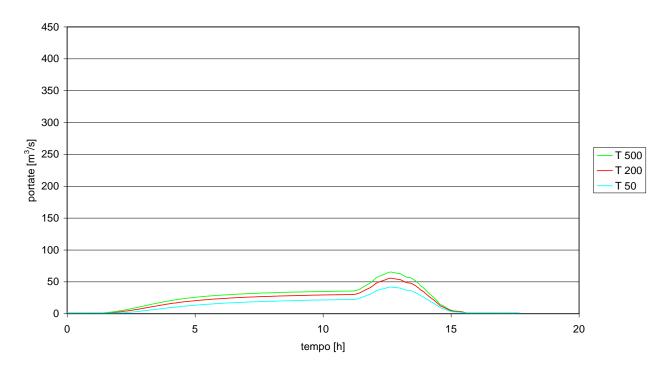

Bormida di Pallare - Sezione a monte confluenza Bormida di Spigno

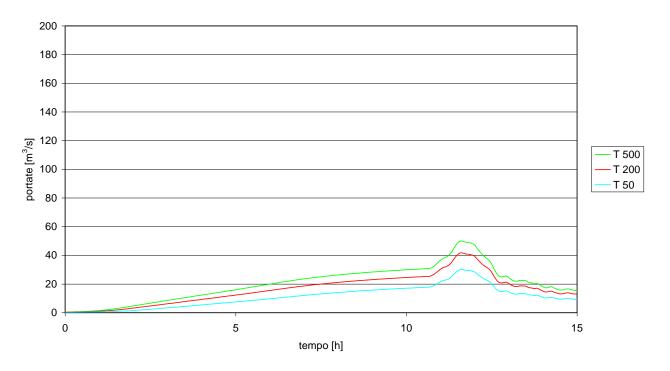

Bormida di Pallare - Sezione a valle confluenza Torrente Nanta

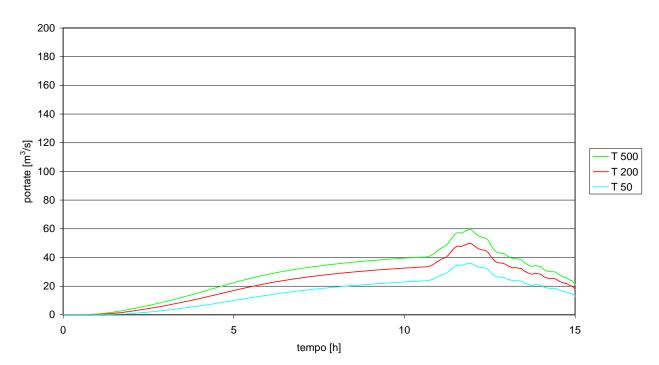

Bormida di Pallare - Sezione a monte confluenza Torrente Nanta

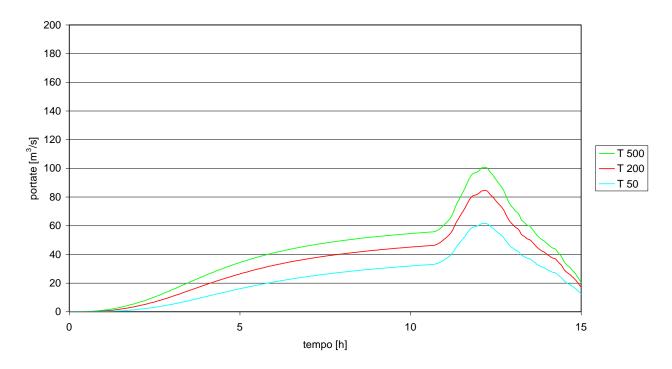

Bormida di Pallare - Sezione a valle confluenza Torrente Plodio


Bormida di Pallare - Sezione a monte confluenza Torrente Plodio

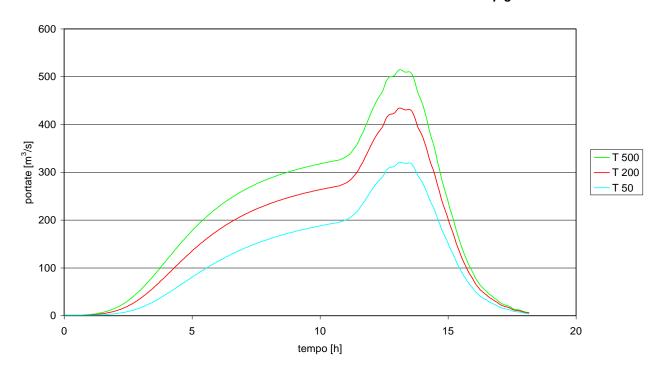

Bormida di Pallare - Sezione a valle confluenza Torrente Viazza


Bormida di Pallare - Sezione a monte confluenza Torrente Viazza

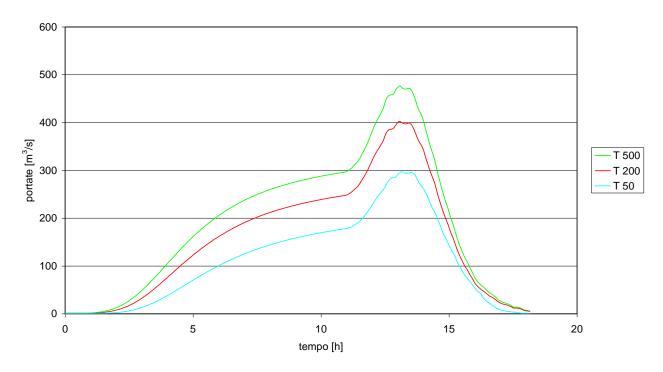

Bormida di Pallare - Sezione a monte Prima Sezione


Rio Nanta - Sezione a monte confluenza Bormida di Palllare

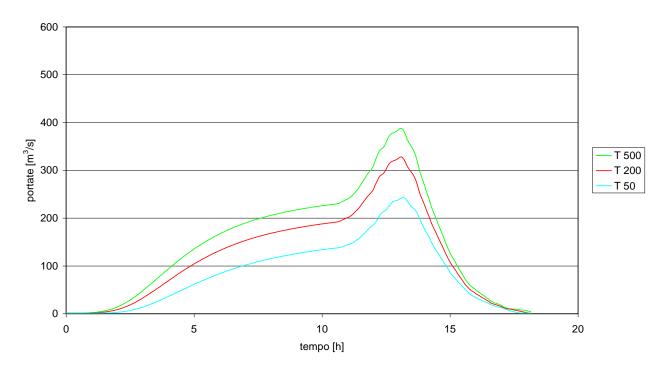
Rio Plodio - Sezione a monte confluenza Bormida di Pallare

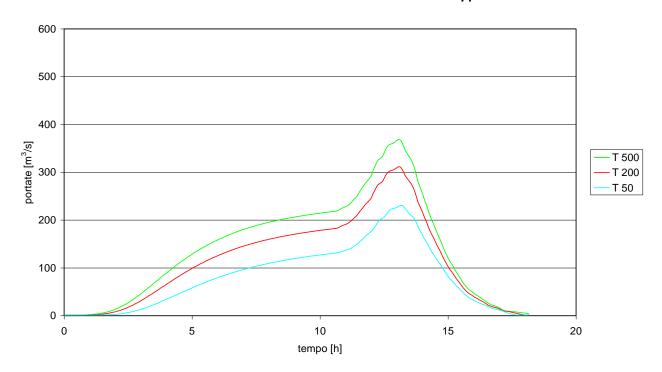


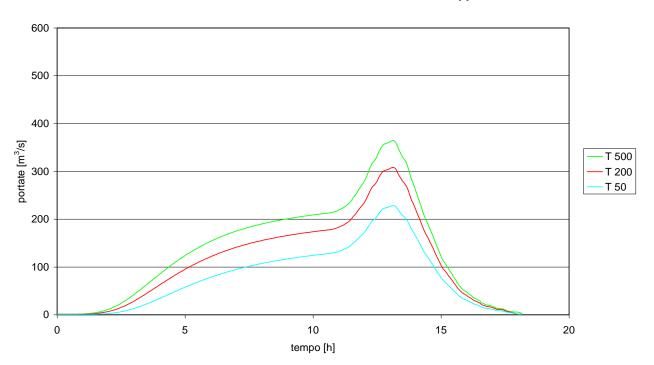
Torrente Viazza - Sezione a monteconfluenza Bormida di Pallare

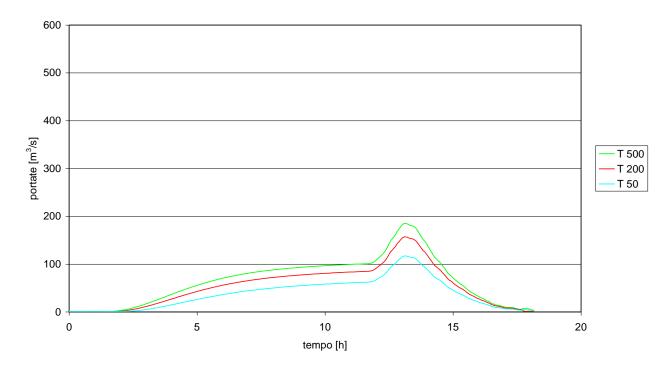


BORMIDA DI MALLARE E RELATIVI AFFLUENTI


Bormida di Mallare - Sezione a monte confluenza Bormida di Spigno

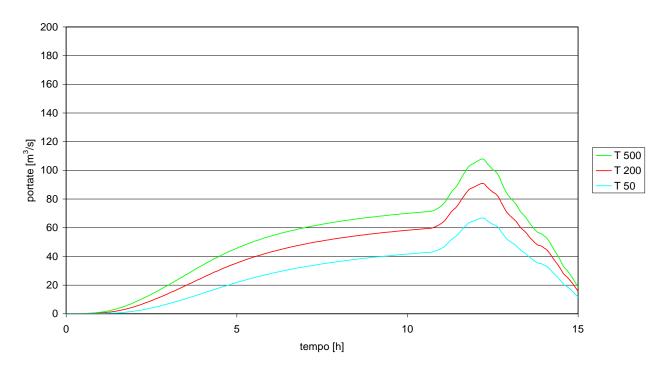

Bormida di Mallare - Sezione a valle confluenza Torrente Ferranietta

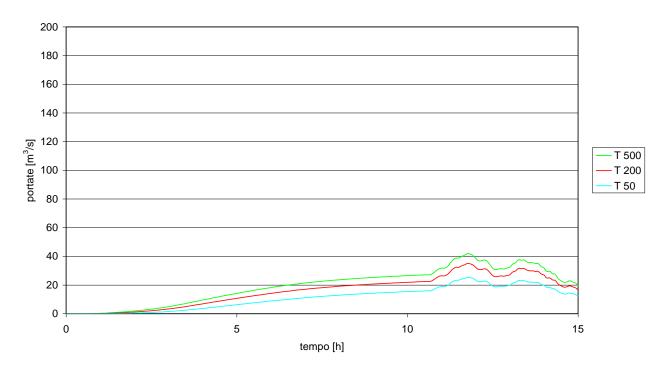

Bormida di Mallare - Sezione a monte confluenza Torrente Ferranietta

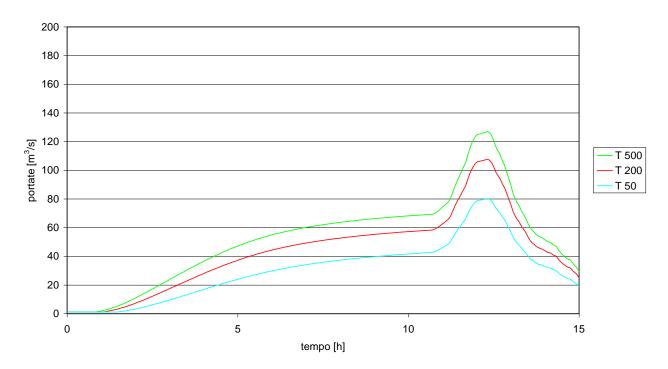

Bormida di Mallare - Sezione a valle confluenza Rio Cappelletta

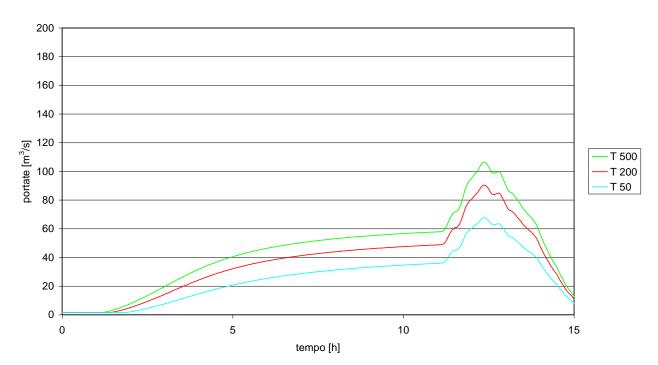

Bormida di Mallare - Sezione a monte confluenza Rio Cappelletta

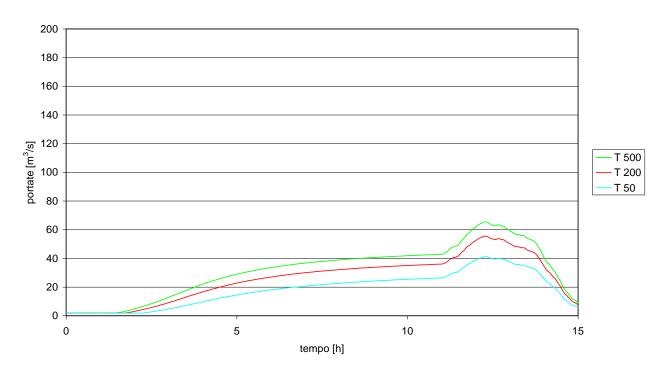
Bormida di Mallare - Sezione a valle confluenza Rio Biterbo

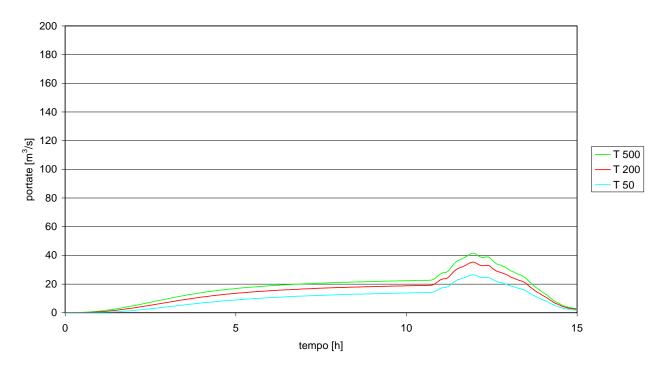

Bormida di Mallare - Sezione a monte confluenza Rio Biterbo


Bormida di Mallare - Sezione a monte Località Fucine

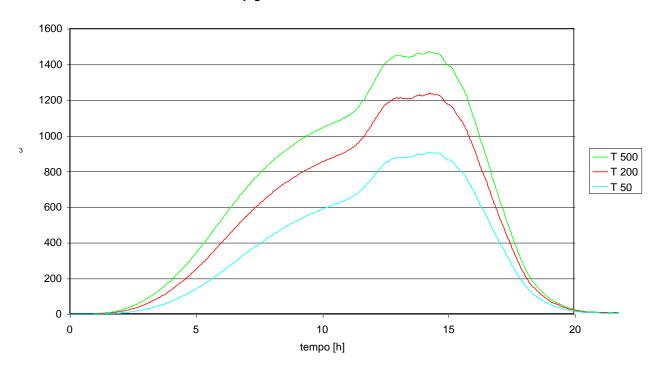

Torrente Ferranietta - Sezione a monte confluenza Bormida di Mallare


Rio Cappelletta - Sezione a monte confluenza Bormida di Mallare

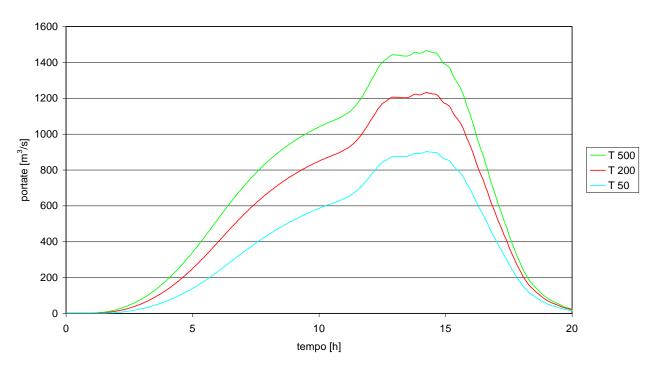

Rio Biterbo - Sezione a monte confluenza Bormida di Mallare


Rio Biterbo - Sezione a valle confluenza Rio Merlino

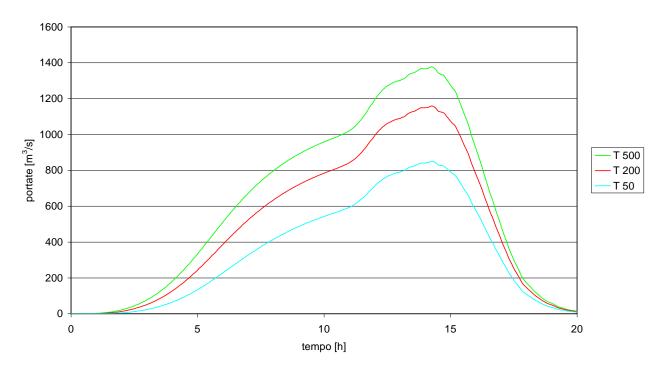
Rio Biterbo - Sezione a monte confluenza Rio Merlino

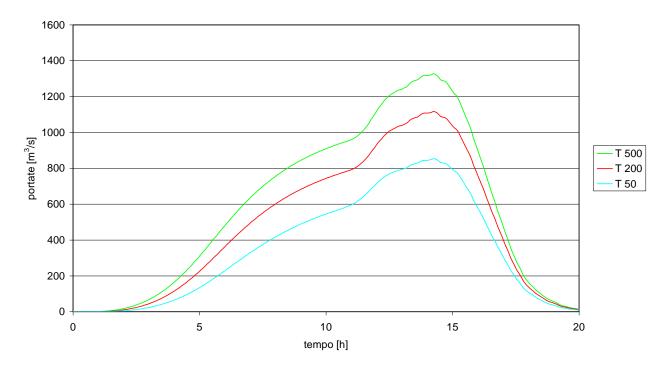


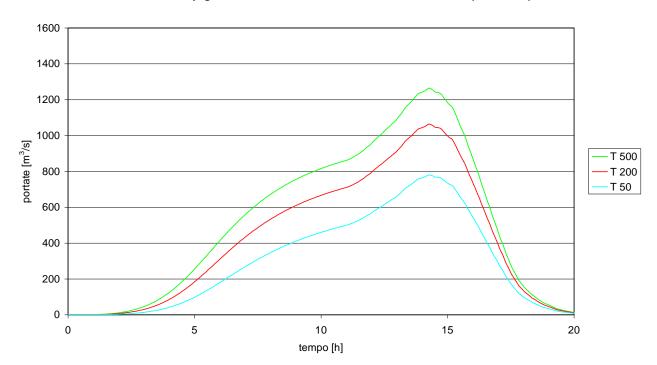
Rio Merlino - Sezione a monte confluenza Rio Biterno

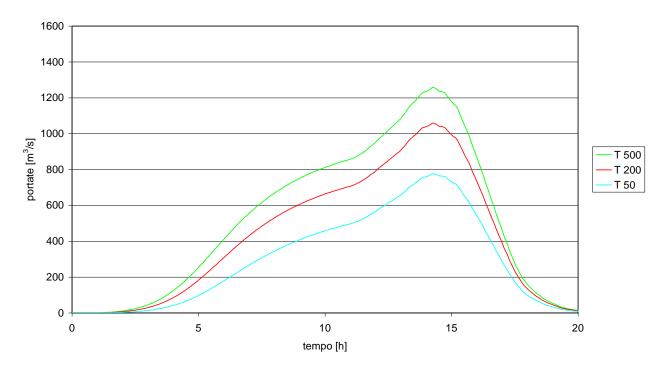


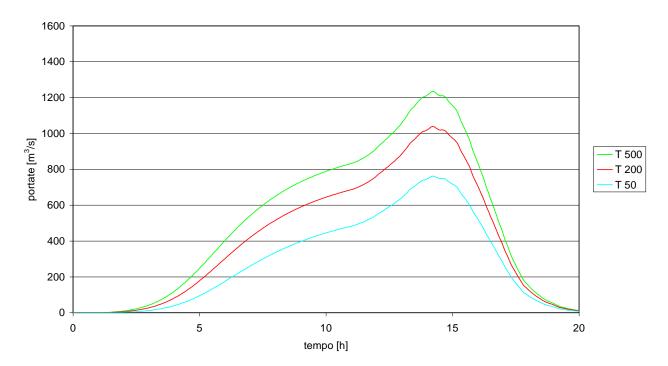
BORMIDA DI SPIGNO E RELATIVI AFFLUENTI

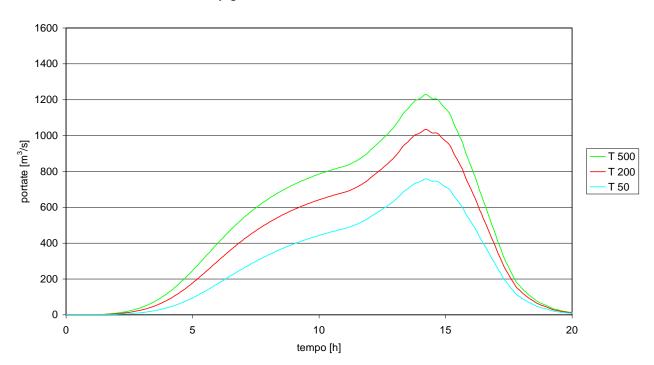

Bormida di Spigno - Sezione al confine con il Piemonte

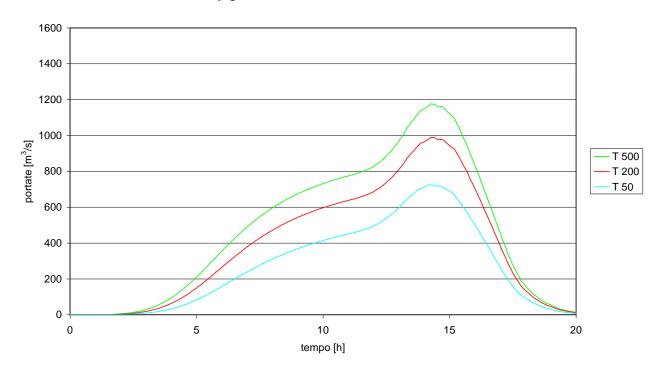

Bormida di Spigno - Sezione a valle confluenza Rio Madonna

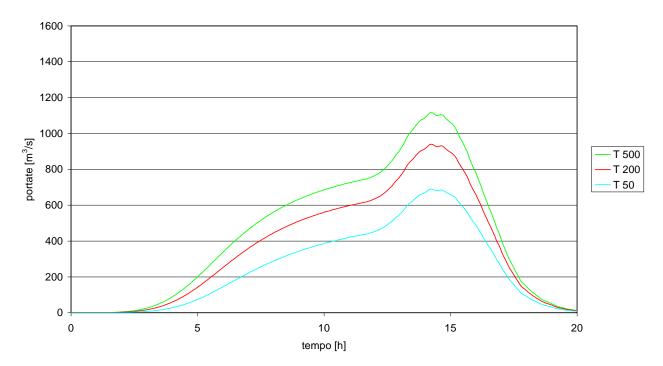

Bormida di Spigno - Sezione a monte confluenza Rio Madonna

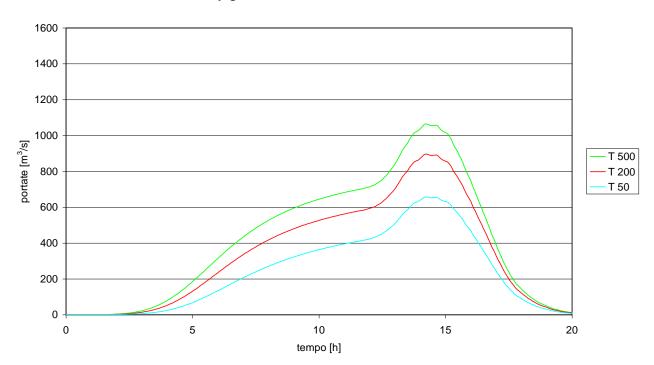

Bormida di Spigno - Sezione a valle confluenza Rio Gelosi (Bormiola)

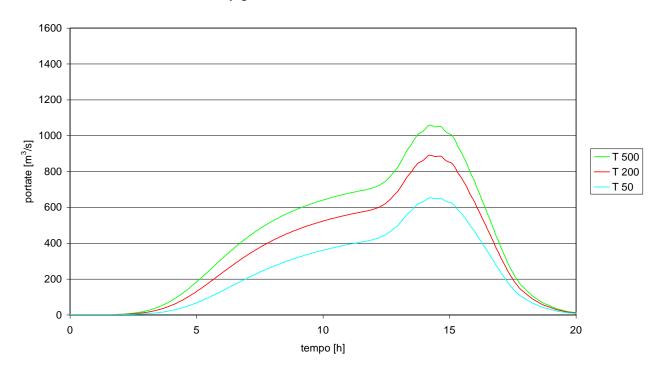

Bormida di Spigno - Sezione a monte confluenza Rio Gelosi (Bormiola)

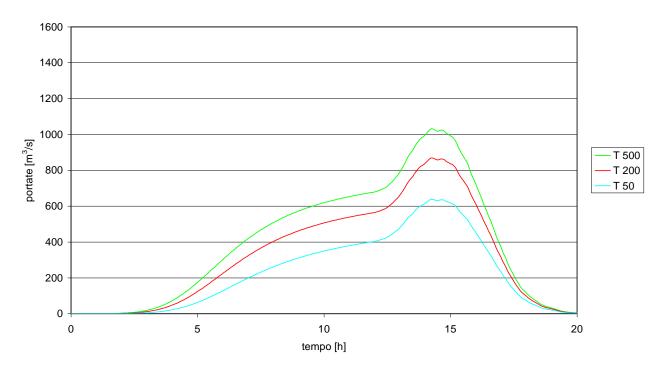

Bormida di Spigno - Sezione a valle confluenza Rio Brange

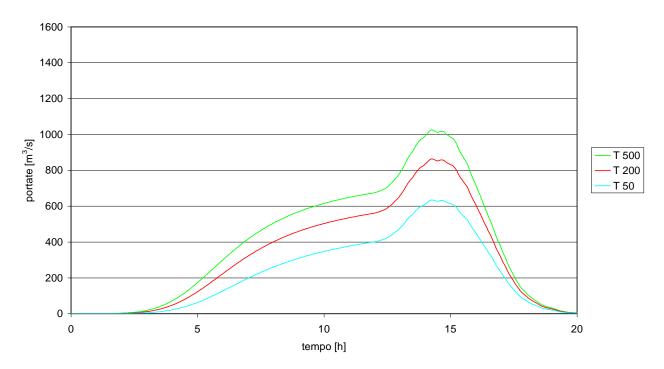

Bormida di Spigno - Sezione a monte confluenza Rio Brange

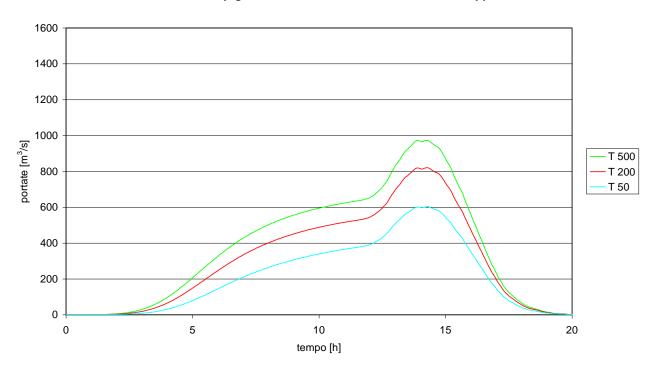

Bormida di Spigno - Sezione a valle confluenza Rio Pollovero

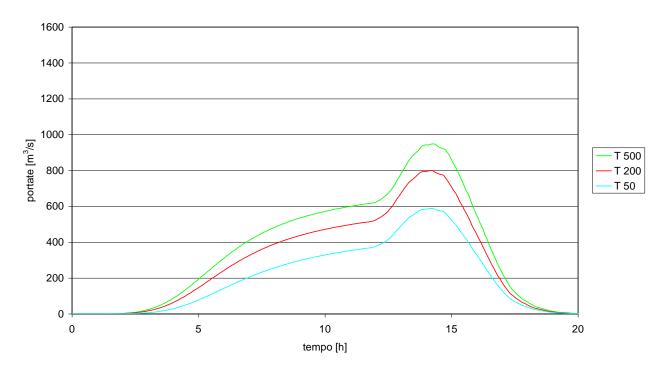

Bormida di Spigno - Sezione a monte confluenza Rio Pollovero

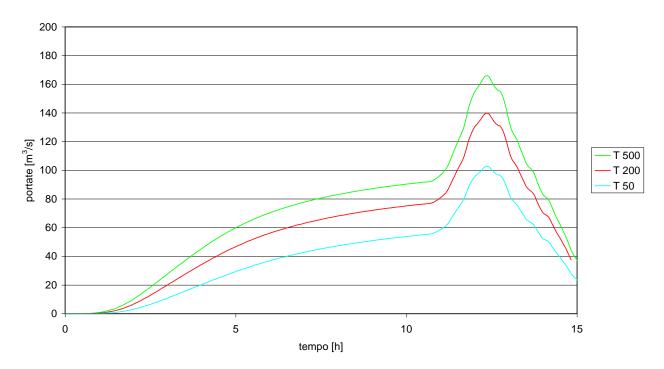

Bormida di Spigno - Sezione a valle confluenza Rio Carretto

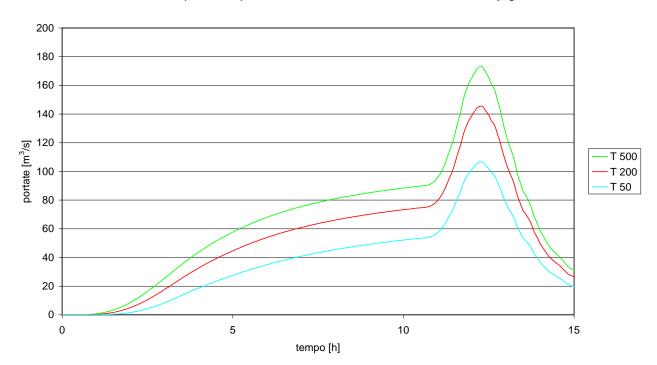

Bormida di Spigno - Sezione a monte confluenza Rio Carretto

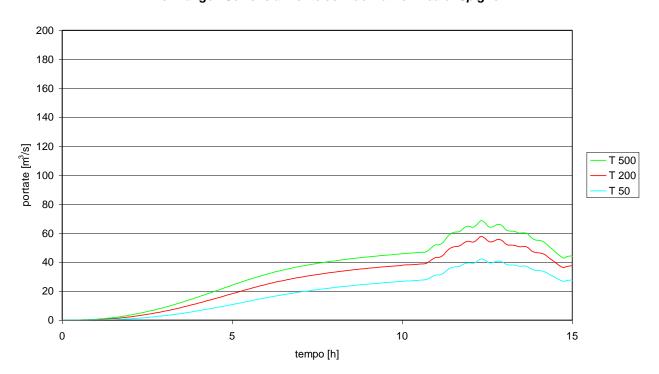

Bormida di Spigno - Sezione a valle confluenza Rio Ferrere

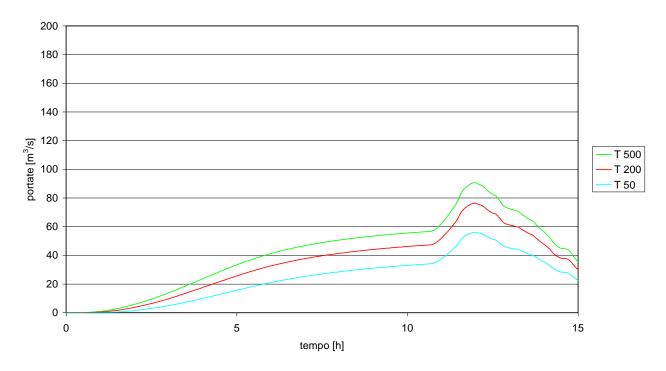

Bormida di Spigno - Sezione a monte confluenza Rio Ferrere

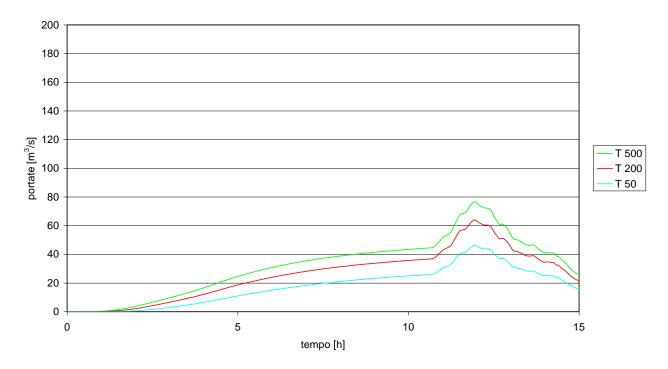

Bormida di Spigno - Sezione a valle confluenza Rio Loppa

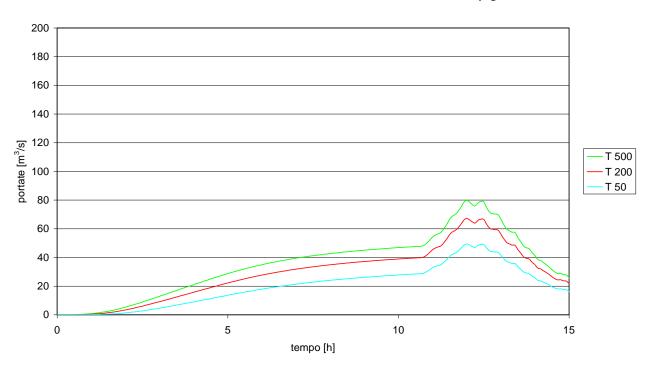

Bormida di Spigno - Sezione a monte confluenza Rio Loppa

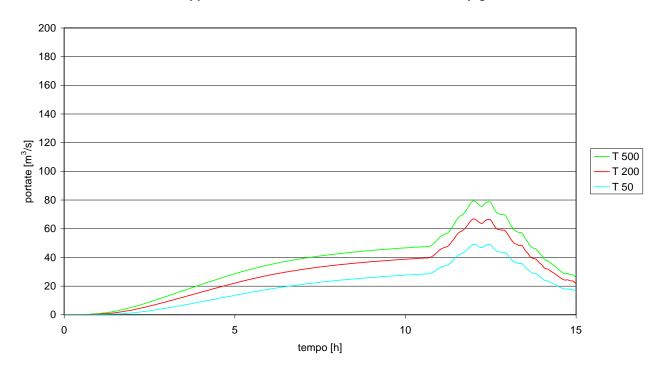

Bormida di Spigno - Sezione a valle confluenza Pallare-Mallare


Rio Madonna - Sezione a monte confluenza Bormida di Spigno

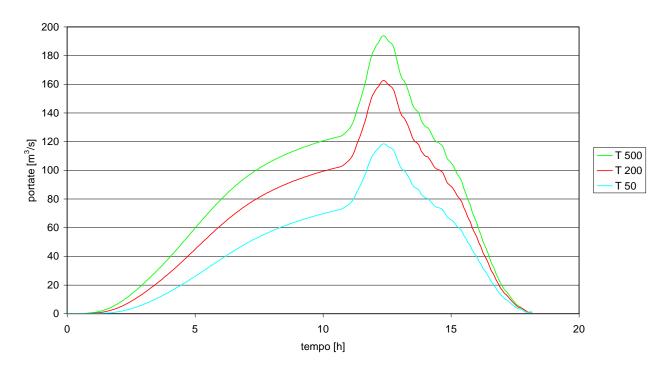

Rio Gelosi (Bormiola)- Sezione a monte confluenza Bormida di Spigno


Rio Brange - Sezione a monte confluenza Bormida di Spigno

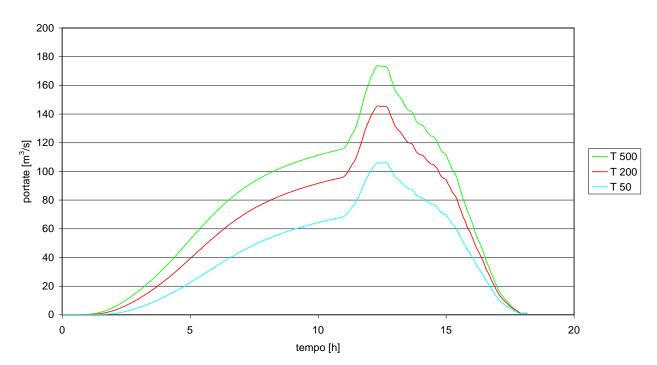

Rio Pollovero - Sezione a monte confluenza Bormida di Spigno


Rio Carretto - Sezione a monte confluenza Bormida di Spigno

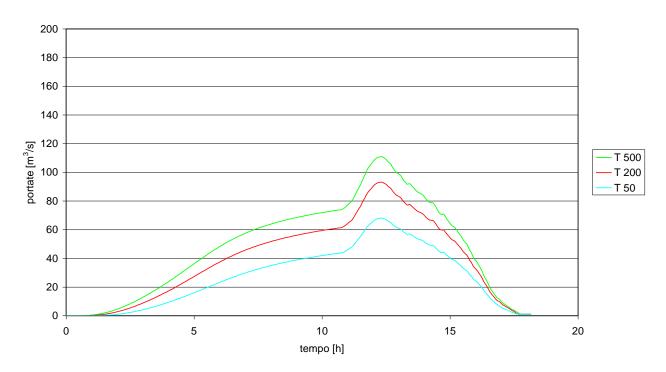
Torrente Ferrere - Sezione a monte confluenza Bormida di Spigno

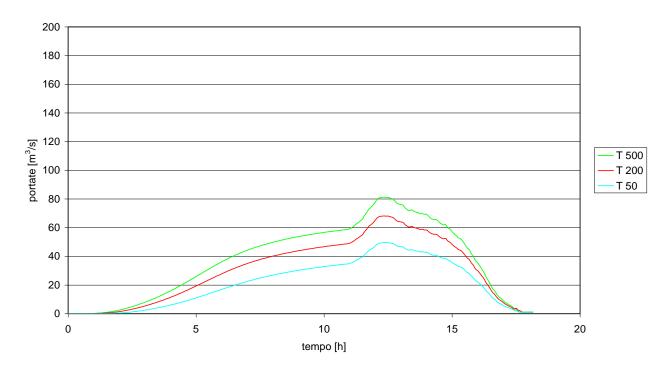


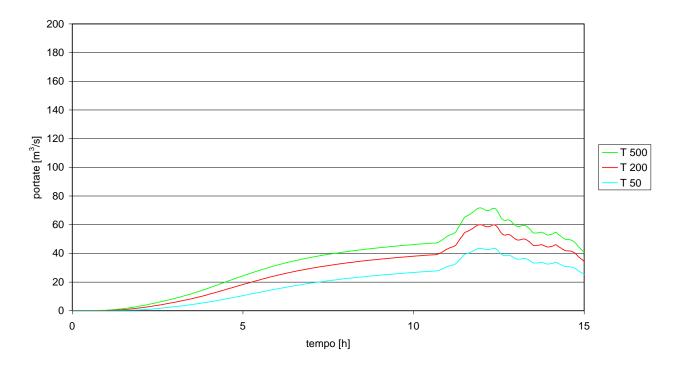
Rio Loppa - Sezione a monte confluenza Bormida di Spigno



TORRENTE VALLA E RELATIVI AFFLUENTI


Rio Valla - Sezione a valle Confine Piemonte


Rio Valla - Sezione a valle confluenza Rio Giusvalletta


Rio Valla - Sezione a monte confluenza Rio Giusvalletta

Rio Valla - Sezione a monte Prima Sezione

Rio Giusvalletta - Sezione a monte confluenza Rio Valla

